$a,b\in\mathbb Z^+$, and the equations given are $a-b=120$, and $\operatorname{lcm}(a,b)=105\gcd(a,b)$. What is $a$?
So what I did was that I first found that $a=b+120$, and plugged that value of $a$ into the second equation:$$\begin{align}\operatorname{lcm}(120+b,b)&=105\gcd(120+b,b)\\\frac{ab}{\gcd(120+b,b)}&=105\gcd(120+b,b)\\\gcd(120+b,b)^2&=\frac{ab}{105}\\\gcd(120+b,b)&=\sqrt{\frac{ab}{105}}\\\gcd(120,b)&=\sqrt{\frac{b(b+120)}{105}}\end{align}$$I'm not too sure if this is the correct way to go. Should I manipulate the equations, or should I do something else?
\text{lcm}
rather than\operatorname{lcm}
then when you type3\text{lcm}(a,b)
you'll see $3\text{lcm}(a,b)$ instead of $3\operatorname{lcm}(a,b).$ And it's not just that some horizontal space is added; rather the amount of space depends on the context. $$\begin{align} & 3\operatorname{lcm}(a,b) \ & 3\text{lcm}(a,b) \end{align} $$ – Michael Hardy Sep 14 '20 at 18:26