0

Say that we have $n$ complex-valued vectors $\mathbf{z}_{i}$ and we want to evaluate:

$$\left\|\sum_{i=1}^{n} \mathbf{z}_{i}\right\|_2^{2}$$

Now, I know that for real vectors $\mathbf{x}_{i}$ it holds:

$$\left\|\sum_{i=1}^{n} \mathbf{x}_{i}\right\|_2^{2}=\sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|_2^{2}+\sum_{i \neq j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$$ But when dealing with complex vectors, the last term with the inner product will be a complex number in general so I am not sure that this formula generalizes for this case. What am I missing?

2 Answers2

2

Generalizing @enzotib's answer to $n$ terms, since $\Vert z\Vert_2^2=z^\ast\cdot z$ we have$$\left\Vert\sum_iz_i\right\Vert_2^2=\sum_iz_i^\ast\cdot\sum_jz_j=\sum_{ij}z_i^\ast\cdot z_j=\sum_iz_i^\ast\cdot z_i+\sum_{i\ne j}z_i^\ast\cdot z_j.$$

J.G.
  • 115,835
1

For two complex numbers $$ \|z_1+z_2\|^2=(z_1+z_2)^*(z_1+z_2)=\|z_1\|^2+\|z_2\|^2+(z_1^*z_2+z_1z_2^*)=\\ \|z_1\|^2+\|z_2\|^2+2Re(z_1^*z_2) $$ easily extended to $n$.