Let $A = (\int_{- \infty}^{\infty} \text{exp}(-x^{2})dx)^{2} = \int_{- \infty}^{\infty} \text{exp}(-x^{2})dx \cdot \int_{- \infty}^{\infty} \text{exp}(-y^{2}) dy = \int_{-\infty}^{\infty}\int_{- \infty}^{\infty} \text{exp}(-x^{2}-y^{2})dxdy$
$ \ \ $
Take $x = rcos(t), y = rsen(t)$, with $0<r< \infty$, $0≤t<2π$ (thus $x² + y² = r²$)
Then
$ \ \ $
$A = \int_{0}^{2π}\int_{0}^{\infty} r\cdot \text{exp}(-r²) dr dt $
$ \ \ $
We have that $\int r \cdot \text{exp}(-r²) dr = -\frac{ \text{exp}(-r²)}{2}$
Then $\int_{0}^{\infty} r \cdot \text{exp}(-r²) dr = -\frac{ \text{exp}(-\infty)}{2} + \frac{ \text{exp}(0)}{2} = \frac{1}{2}$
$ \ \ $
Thus $A = \int_{0}^{2π} \frac{1}{2} dt = π$
$ \ \ $
So $\sqrt{π} = \sqrt{A} = \int_{- \infty}^{\infty} \text{exp}(-x^{2})$
$ \ \ $
Now, go to the original problem..
$ \ \ $
$B = \int_{-\infty}^{\infty} \text{exp}(\frac{-x²}{2\sigma^{2}}) dx$
Doing change of variable $u = \frac{x}{\sqrt{2}\sigma} \implies du = \frac{dx}{\sqrt{2}\sigma} \implies \sqrt{2}\sigma du = dx$
Then we have
$ B = \sqrt{2}\sigma \int_{-\infty}^{\infty} \text{exp}(-u²) du = \sqrt{2} \sigma \sqrt{π}$
Thus $\frac{B}{\sqrt{2π}} = \sigma$
And we are done.