I want to show that for $\gcd(a,b)=1$, $a,b \in \mathbf{Z}$, $\gcd(b^2+ab,a^2+2ab)=1$.
I think the first step is something like this $$\gcd(b^2+ab,a^2+2ab)=\gcd(b(a+b),a(a+b)+ab). $$
I have two properties that can be used. There are
1/ $\gcd(a+b,c)=\gcd(a,c)$ if $b \vdots a$.
2/ $\gcd(ab,c)=\gcd(a,c)$ if $\gcd(b,c)=1$.
Please help me. Thank you.