3

I am reviewing some old notes on dynamical system and came across a result that reminds me to the Wronskian equation except that here we are dealing with a nonlinear equation:

Let $\phi(t;{\bf x})$ be a solution to the equation $\dot{{\bf x}}(t)= f(t,{\bf x}(t))$, with $\phi(0;{\bf x})={\bf x}$. Define the function $W$ by $$ \begin{align} W(t,{\bf x})&=\det\left[\frac{\partial \phi}{\partial {\bf x}}(t;{\bf x})\right]. \end{align} $$ Then, $W$ satisfies the differential equation $$ \dot{W}(t)=W(t)\, (\nabla_{\bf x}\cdot f)(t,\phi(t;\mathbf{x})); \qquad W(0)=1, $$ where $\left(\nabla_{\bf x}\cdot f\right)(t,\phi(t;{\bf x})) =\sum_{j=1}^n \frac{\partial f}{\partial x_j}(t,\phi(t;{\bf x}))$

I am trying to prove this result but I am completely at odds. Any hints or a sketch of a solution will be appreciated.

Mittens
  • 39,145

1 Answers1

3

First let me state the following elementary auxiliary Lemma from linear algebra

Lemma: Let $\Delta:\mathbb{R}^{n^2}\longrightarrow\mathbb{R}$ be the determinant function, i.e. $$\Delta(\alpha_{11},\ldots,\alpha_{n1},\ldots,\alpha_{1n}, \ldots,\alpha_{nn})^{\top} = \det[(\alpha_{ij})]$$ where $(\alpha_{ij})$ is the $n\times n$--matrix whose $ij$--th component is $\alpha_{ij}$. Then, $$\Delta_\alpha= \frac{\partial \Delta}{\partial\alpha}= (W_{11}\ldots,W_{n1},\ldots,W_{1n},\ldots,W_{nn})$$ where $W_{ij}$ is the $ij$--th cofactor of the matrix $(\alpha_{ij})$.

The proof of this Lemma an simple exercise about computing determinants using the cofactor formula.


Here is a proof of the statement of the OP:

Given the solution $\phi(t;{\bf x})=(\phi^1(t;{\bf x}),\ldots,\phi^n(t;{\bf x}))^\top$ to the initial value problem $$ \dot{\mathbf{y}}(t)=f(t,\mathbf{y}(t)),\qquad \mathbf{y}(0)=\mathbf{x}$$ we use the notation $\phi^{i}_{x_j}(t;\mathbf{x})= \frac{\partial\phi^i}{\partial x_j}(t;\mathbf{x})$. Using the auxiliary Lemma above along with the chain rule we obtain $$ \begin{align} \dot{W}&= \sum_i W_{i1}\dot{\phi}^{i}_{x_1} +\cdots+ \sum_i W_{in}\dot{\phi}^{i}_{x_n}\\ &=\sum_{ij} W_{ij}\dot{\phi}^{i}_{x_j} \tag{1}\label{chain} \end{align} $$ where $W_{ij}$ is the $ij$--th cofactor of the matrix $\left(\phi^i_{x_j}\right)$. It is easy to cheach that $\phi_{\bf x}(t;{\bf x})=\frac{\partial\phi}{\partial {\bf x}}(t;{\bf x})$ satisfies the variational equation $$\begin{align} \begin{matrix} \dot{\phi}_{\bf x}(t;{\bf x})&=&f_{\bf{x}}(t,\phi(t;{\bf{x}}))\phi_{\bf x}(t;{\bf x})\\ \phi_{\bf x}(0;{\bf x})&=&I \end{matrix} \tag{2}\label{vareq} \end{align} $$ Substituting \eqref{vareq} in \eqref{chain} and recalling the fact that the determinant of a matrix that has two identical columns is zero, we obtain $$ \begin{align} \dot{W}(t)&=\sum_{ijk} W_{ij}(t) f^i_{x_k}(t,\phi(t;{\bf x}))\phi^k_{x_j}(t;{\bf x})\\ &= \sum_{ki} \left(f^i_{x_k}(t,\phi(t;{\bf x})\right) \sum_j W_{ij}(t)\phi^k_{x_j}(t;{\bf x})\\ &=\sum_i f^i_{x_i}(t,\phi(t;{\bf x}) \sum_j W_{ij}(t)\phi^i_{x_j}(t;{\bf x})\\ &= \sum_i f^i_{x_i}(t,\phi(t;{\bf x})) W(t) = W(t)\,\left(\nabla_{\bf x}\cdot f\right)(t,\phi(t;{\bf x})) \end{align} $$


Comments:

  1. The statement of the OP has the Wronskian equation for linear as a particular case. Indeed, for a non--autonomous linear system $$ \dot{x}=A(t) x\quad x(0)=x_0, $$ where $A(t)\in L(\mathbb{R}^n,\mathbb{R}^n)$ is continuously differentiable in $t$, $f(t,\mathbf{x})=A(t)\mathbf{x}$ and so, $(\nabla_x\cdot f)(t,\mathbf{x})=\operatorname{Tr}(A(t))$ where $\operatorname{Tr}(A(t))= \sum_j a_{jj}(t)$, the trace of $A(t)$. Then $W$ satisfies $$ \dot{W}=\operatorname{Tr}(A(t))\, W $$ and so, $$ W(t)=W(0) \exp\Big(\int^t_0\operatorname{Tr}(A(s))\,ds\Big) $$
  2. The statement can be used to prove Liouville's theorem. The uniqueness theorem of solutions to initial value problem $$ \begin{align} \dot{y}=f(t, y),\quad y(s)=x\tag{3}\label{three} \end{align} $$ shows that the solutions to $\eqref{three}$ satisfy the following flow property: If $\phi_{t,s}(y)=\phi(t;s,y)$ denotes the solution in $t$ initial conditions $\phi(s;s,y)=y$, then

a. $\phi_{t,s}\circ\phi_{s,r}(y)=\phi_{t,r}(y)$ for all $r,\,s,\,t\in I$ and $y\in \Omega$.

b. $\phi_{t,t}(y)=y$ for all $t\in I$ and $y\in\Omega$.

For simplicity, we assume that any solution starting in $\Omega$ exists for all times, that is $I=\mathbb{R}$. Suppose that $D(0)\subset\Omega$ has a finite volume $v(0)$ in $\mathbb{R}^n$; then, the flow $\phi_{0,t}$ transports $D(0)$ to $D(t)=\phi_{t,0}(D(0))$. A problem of interest is to understand how the volume $v(t)=\operatorname{vol}(D(t))$ evolves with $\phi_{t,0}$.

$v(t)$ satisfies the equation $$\begin{align} \begin{matrix} \dot{v}(t)&=& \int\limits_{D(0)}(\nabla_y\cdot f)(t,\phi(t;0,y)) \det\left[\frac{\partial\phi}{\partial y}(t;0,y)\right] dy\\ &=&\int\limits_{D(t)}\nabla_y\cdot f(t,y) dy \end{matrix} \tag{4}\label{liouvfor} \end{align} $$ To see this, apply the change of variables formula for integration,
to obtain $$ \begin{align} \begin{matrix} v(t)&=&\int_{D(t)} dy=\int_{\phi_{t,0}D(0))} dy\\ &=& \int_{D(0)} \left|\det\left[\frac{\partial \phi_{t,0}}{\partial y}(y)\right]\right| dy \end{matrix}\tag{5}\label{multchange} \end{align} $$ Since $\phi_{t,0}(\cdot)$ is a family of diffeomorphisms and $\phi_{0,0}=Id$, we can ignore the absolute value in \eqref{multchange}. Differentiating with respect to $t$ gives $$ \dot{v}(t)= \int_{D(0)} \frac{d}{dt} \det\left[\frac{\partial \phi_{t,0}}{\partial y}(y)\right] dy $$ The conclusion then follows from the statement of the OP along with another application of the change of variables formula.

Mittens
  • 39,145