Below is problem 4.28 from Lee's Introduction to Topological manifolds:
Suppose $M$ is a noncompact manifold of dimension $n \ge 1$. Show that its one-point compactification is an $n$-manifold if and only if there exists a precompact open subset $U \subseteq M$ such that $M \setminus U$ is homeomorphic to $\mathbb{R}^n \setminus \mathbb{B}^n$. [Hint: you may find the inversion map $f: \mathbb{R}^n \setminus \mathbb{B}^n \to \overline{\mathbb{B}^n}$ defined by $f(x)=x/|x|^2$ useful.]
I can establish the "only if" direction by considering a regular coordinate ball surrounding $\infty$. However, I have difficulty tackling the converse direction. After some searching on the site, I found the following answer:
$\color{red}{\text{Since } M\setminus U \text{ is homeomorphic to } \mathbb{R}^n\setminus \mathbb{B}^n, \text{ it follows that } M\setminus\overline{U} \text{ is homeomorphic to } \mathbb{R}^n\setminus \overline{\mathbb{B}^n}.}$ Call such a homeomorphism $g$. By using the inversion map $f$, one sees that $\mathbb{R}^n\setminus\overline{\mathbb{B}^n}$ is homeomorphic to $\mathbb{B}^n \setminus\{\vec{0}\}$. Composing $g$ and $f$, we have a homeomorphism between $M\setminus\overline{U}$ and $\mathbb{B}^n\setminus \{\vec{0}\}$. Try to prove that we can use these to find a homeomorphism between $M^\ast \setminus \overline{U}$ and $\mathbb{B}^n$.
It is exactly the red sentence that bothers me for a long time. Assuming the theorem on the invariance of boundary, since homeomorphism preserves interior points, $\text{int } (M\setminus U)\cong \text{int } (\Bbb R^n\setminus \Bbb B^n)= \Bbb R^n\setminus \overline{\Bbb B^n}$ (Here int should be interpreted as the manifold interior). If I can verify $\text{int } (M\setminus U) =M\setminus\overline{U}$, then I am done. But does it hold for arbitrary $U$ satisfying the hypothesis or do I have to choose $U$ cleverly? Of course, alternative proofs are welcome as well. Thanks in advance.