-1

To paraphase my textbook:

Use that $1001 = 7 \cdot 11 \cdot 13$ to prove that if $a= a_n a_{n-1}\dots a_1 a_0$ in base $10$, then, respectively, $7$ or $11$ or $13$ divides $a$ if and only if it divides $a_2 a_1 a_0- a_5 a_4 a_3 +a_8 a_7 a_6- \cdots $.

I'm on the chapter of my textbook in which modular congruences are introduced.

1 Answers1

0

Hint:

Your equality shows that $1000\equiv -1\mod 7\;(\text{or }11,\;\text{or }13).$

Now writing $a$ in base $1000$ consists in grouping its digits by groups of $3$, starting from the right, namely: $$a=(a_2a_1a_0)1000^0+(a_5a_4a_3)1000+(a_8a_7a_6)1000^2+\dotsm$$ so that, for instance, $$a\bmod 7\equiv (a_2a_1a_0)-(a_5a_4a_3)+(a_8a_7a_6)-\dotsm$$

J. W. Tanner
  • 60,406
Bernard
  • 175,478