$f$ is integrable on $[0,\infty)$, and $\int_0^{\infty} |f(y)|dy < \infty$.
Prove:
Then $ F(x)=\int_0^{\infty}\frac{f(y)}{x+y}dy $ is continuous on $(0,\infty)$ and differentiable, and have $\lim\limits_{x\to \infty} F(x)=0$.
$f$ is integrable on $[0,\infty)$, and $\int_0^{\infty} |f(y)|dy < \infty$.
Prove:
Then $ F(x)=\int_0^{\infty}\frac{f(y)}{x+y}dy $ is continuous on $(0,\infty)$ and differentiable, and have $\lim\limits_{x\to \infty} F(x)=0$.
A brief proof
then use dominated convergence theorem and you have an answer for 2 points.