Let $m_1,m_2,\ldots, n_t$ be square-free integers $(m_i\neq 0, \pm 1)$ which are relatively prime in pairs. Show that $[\mathbb{Q}(\sqrt{m_1},\sqrt{m_2},\ldots, \sqrt{m_t}):\mathbb{Q}] = 2^t$
Hint: A careful induction on $t$ may be of use.
Hi. I have some questions regarding my possible solution.
Conjeture 1. If $m,n$ are relatively prime and $m,n$ square-free integers then $mn$ is square free integer.
Conjeture 1 seems intuitive but I can't think of how proves it.
Conjeture 2. $\mathbb{Q}(\sqrt{m_1},\sqrt{m_2},\ldots, \sqrt{m_t})=\mathbb{Q}(\sqrt{m_1},\sqrt{m_2},\ldots, \sqrt{m_{t-1}})(\sqrt{m_t})$.
Solution: For $t=1$, we know that $[\mathbb{Q}(\sqrt{m}):\mathbb{Q}]=2$. Suppose that $[\mathbb{Q}(\sqrt{m_1},\sqrt{m_2},\ldots, \sqrt{m_t}):\mathbb{Q}] = 2^t$. Now, \begin{align*} &[\mathbb{Q}(\sqrt{m_1},\ldots, \sqrt{m_{t+1}}):\mathbb{Q}]=\\ &[\mathbb{Q}(\sqrt{m_1},\ldots, \sqrt{m_t})(\sqrt{m_{t+1}}):\mathbb{Q}(\sqrt{m_1},\ldots, \sqrt{m_t})][\mathbb{Q}(\sqrt{m_1},\ldots, \sqrt{m_t}):\mathbb{Q}]\\ &=2\cdot 2^t=2^{t+1} \end{align*}
Is true the conjeture 1 and 2? is correct this solution?...
Therefore, I must proves that $x^2-m_{t+1}$ is the minimal polynomial. Right?...
– eraldcoil Sep 04 '20 at 04:56