Consider a sequence $$ s_{n}=\sum_{r=1}^{n}\tan^{-1}\frac{2}{r^{2}} .$$
then we have
$$ \frac{1}{2}\sum_{r=1}^{n}\frac{2}{r^{2}} \leq s_{n} \ \leq \sum_{r=1}^{n}\frac{2}{r^{2}} \\\Rightarrow \frac{\pi^{2}}{6} \leq \lim_{n \to \infty}s_{n}\leq\frac{\pi^{2}}{3} $$
But how to attack to find the exact value of this limit? Anyone please?