Consider the equation
$$n! = k^n$$
If you look at this question of mine, you will see a magnificent approximation which was proposed by @robjohn. Adapted to your problem, it gives
$$\color{blue}{n\sim e\,k\,\exp\left(W\left(-\frac{\log (2 \pi k)}{2 e k}\right)\right)-\frac 12}$$ where $W(.)$ is Lambert function. For sure, you will need to use $\lceil n \rceil$.
For illustration purposes, let us try for $k=2^p$ and admire the results
$$\left(
\begin{array}{ccc}
p & \text{approximation} & \text{exact} \\
1 & 3.44447349465 & 3.45986564404 \\
2 & 8.60959968277 & 8.61514776083 \\
3 & 19.1868478144 & 19.1891973308 \\
4 & 40.6214371321 & 40.6225104871 \\
5 & 83.7910580611 & 83.7915684276 \\
6 & 170.445206724 & 170.445454817 \\
7 & 344.078832367 & 344.078954473 \\
8 & 691.678759482 & 691.678820001 \\
9 & 1387.21631441 & 1387.21634452 \\
10 & 2778.63245721 & 2778.63247222 \\
11 & 5561.80792391 & 5561.80793141 \\
12 & 11128.5033891 & 11128.5033929 \\
13 & 22262.2396826 & 22262.2396845 \\
14 & 44530.0581347 & 44530.0581356 \\
15 & 89066.0412025 & 89066.0412025
\end{array}
\right)$$