Geometric proof using intercept theorem
Suppose without loss of generality that $1 \le \vert u \vert \le \vert v \vert$ and denote $v^\prime = v \frac{\vert u \vert}{\vert v \vert}$. Notice that $\vert v^\prime \vert = \vert u \vert$.
Using intercept theorem for the triangles $0 \ \frac{u}{\vert u \vert }\ \frac{v}{\vert v \vert }$ and $0 \ u \ v^\prime$ you get
$$\begin{aligned}
\vert u - v \vert^2&= \vert u - v^\prime\vert^2 + \vert v^\prime - v\vert^2 + 2 \langle u - v^\prime, v^\prime -v \rangle\\
&\ge \vert u - v^\prime \vert^2\\&= \vert u \vert^2 \left\vert\frac u {|u|} -\frac v {|v|}\right\vert^2\\
&\ge \left\vert\frac u {|u|} -\frac v {|v|}\right\vert^2
\end{aligned}$$
$\langle u - v^\prime, v^\prime -v \rangle \ge 0$ because $\angle u v^\prime v \ge \frac{\pi}{2}$.