How may I simplify the following so I could calculate the limit without getting $0$ in the denominator when replacing $x$ with $1$?
$$\lim_{x \to 1} \frac{\sqrt{x}-x^2}{1-\sqrt{x}}$$
How may I simplify the following so I could calculate the limit without getting $0$ in the denominator when replacing $x$ with $1$?
$$\lim_{x \to 1} \frac{\sqrt{x}-x^2}{1-\sqrt{x}}$$
$\frac{\sqrt{x}-x^2}{1-\sqrt{x}}= \frac{\sqrt{x}(1-(\sqrt{x})^3)}{1-\sqrt{x}}= \frac{\sqrt{x}(1-\sqrt{x})(1+\sqrt{x}+x)}{1-\sqrt{x}}\\=\sqrt{x}(1+\sqrt{x}+x) $
Let consider
$$\frac{\sqrt{x}-x^2}{1-\sqrt{x}}=\frac{\sqrt{x}-1+1-x^2}{1-\sqrt{x}}=-1+\frac{1-x^2}{1-\sqrt{x}}=-1+\frac{(1+x)(1+\sqrt{x})\color{red}{(1-\sqrt{x})}}{\color{red}{1-\sqrt{x}}}$$
and refer to