Indeed, your solution is almost complete. Now with Dirichlet's integral, substitute $t=2x$:
$$\int_{-\infty}^{\infty} \frac{\sin 2x}{2x}dx=\frac{1}{2}\cdot\int_{-\infty}^{\infty} \frac{\sin 2x}{x}dx=\frac{1}{2}\cdot\int_{-\infty}^{\infty} \frac{\sin t}{t}dt=\frac{\pi}{2}$$
And the integral in the imaginary parts, substitute $t=-x$:
$$\int_{-\infty}^{\infty}\frac{\sin^2 x}{x}dx=\int_{-\infty}^{0}\frac{\sin^2 x}{x}dx+\int_{0}^{\infty}\frac{\sin^2 x}{x}dx=-\int_{0}^{\infty}\frac{\sin^2 t}{t}dt+\int_{0}^{\infty}\frac{\sin^2 x}{x}dx=0$$
Hence:
$$\int_{-\infty}^{\infty} \frac{\sin x}{x}e^{ix}dx=\int_{-\infty}^{\infty} \left(\frac{\sin 2x}{2x}+i\frac{\sin^2 x}{x}\right)dx=\int_{-\infty}^{\infty} \frac{\sin 2x}{2x}dx+i\int_{-\infty}^{\infty}\frac{\sin^2 x}{x}dx=\frac{\pi}{2}.$$