Lets start with:
$$\eqalign{
\sum_{j\in\mathbb{Z}}\frac{1}{2j^2+2j+1}&=\color{red}{\sum_{- \infty \le j \le -1}\frac{1}{2j^2+2j+1}}+\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}\cr
&=\color{red}{\sum_{\infty \ge -j \ge 1}\frac{1}{2j^2+2j+1}} +\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}\cr
&=\color{red}{\sum_{\infty \ge \underbrace{-j-1}_{-j-1:=k} \ge 0}\frac{1}{2j^2+2j+1}} +\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}\cr
&=\color{red}{\sum_{0 \le k \le \infty }\frac{1}{2(-k-1)^2+2(-k-1)+1}} +\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}\cr
&=\color{red}{\sum_{0 \le k \le \infty }\frac{1}{2k^2+2k+1}} +\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}\cr
&=2\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}\cr
}$$
therefore:
$$\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}=\frac{1}{2}\sum_{j\in\mathbb{Z}}\frac{1}{2j^2+2j+1}$$
due to Infinite Series and the Residue Theorem black sum it is easy to count:
$$\eqalign{\color{blue}{\sum_{0 \le j \le \infty }\frac{1}{2j^2+2j+1}}&= -\frac{1}{2}\left( \text{Res}\left\{\frac{ \pi \cot \left( \pi z\right) }{2z^2+2z+1} , \frac{-1-i}{2} \right\} +\text{Res}\left\{\frac{ \pi \cot \left( \pi z\right) }{2z^2+2z+1} ,\frac{-1+i}{2} \right\} \right)\cr &=\frac{ \pi }{2}\text{tgh}\left( \frac{ \pi }{2} \right)}$$
summarizing with the litle help of Wolfram for finite sum
$$\sum_{32 \le j \le \infty }\frac{1}{2j^2+2j+1}=\\ \frac{ \pi }{2}\text{tgh}\left(\frac{ \pi }{2} \right)-\frac{11331201497882268207659413442681772956711855668184103152864}{7951513543813219897041288425928485300865169239957975379625}$$