I've recently noticed a few different posts asking about this problem Isomorphism of two direct sums, all using the CRT. I think I understand it this way. What caught my eye is in the above link a user gives this hint:
The Bezout identity $\rm\: ad+bc\:\! =\:\! g\:$ yields the following Smith normal form reduction $\left[\begin{array}{cc}\rm 1 & \!\!\!0 |& \!\!\!a & \!\!\!0\\ 0 &\rm \!\!\!1| & \!\!\!0 & \!\!\!b\end{array}\right]$ $\sim$$\left[\begin{array}{cc}\rm 1 & \!\!\!1 |& \!\!\!a & \!\!\!b\\ 0 &\rm \!\!\!1| & \!\!\!0 & \!\!\!b\end{array}\right]$ $\sim$$\left[\begin{array}{cc}\rm 1 & \!\!\!1 |& \!\!\!a & \!\!\!b\\ 0 &\rm \!\!\!1| & \!\!\!0 & \!\!\!b\end{array}\right]$ $\left[\begin{array}{cc}\rm 1 & \!\!\!0 |& \rm d &\rm \!\!\!\smash{-\!b/g}\\ 0 &\rm \!\!\!1| & \!\!\!\rm c &\rm a/g\end{array}\right] $= $\left[\begin{array}{cc}\rm 1 & \!\!\!1 |& \!\!\!g & \!\!\!0\\ 0 &\rm \!\!\!1| & \!\!\!bc & \!\!\!ab/g\end{array}\right]$ = $\left[\begin{array}{cc}\rm 1 + bc/g & \!\!\!1 |& \!\!\!gcd(a,b) & \!\!\!0\\ bc/g &\rm \!\!\!1| & \!\!\!0 & \!\!\!lcm(a,b)\end{array}\right]$
The OP became impatient which led the hint giver to not elaborate. To me this seems like a solution. I'm having trouble seeing why it is just a hint. Can anyone let me know what more I would need to correctly justify the isomorphism?
EDIT: Left Identity matrix not in orginal comment. Is adjoining the other matrix more useful?