I will proceed by assuming the negation. So, let $V$ be set of all sets. So, $V$ exists. Now, I will use axiom schema of specification
$$ \forall w_1,\cdots, w_n \, \forall A \,\exists B \,\forall x \left( x \in B \Longleftrightarrow [ x \in A \wedge \varphi(x,w_1, \cdots , w_n, A)] \right) $$
I will let $A = V$ and $\varphi(x, A) = x \notin x $. So, using the universal instantiation, I get that
$$ \exists B \,\forall x \left( x \in B \Longleftrightarrow [ x \in V \wedge \varphi(x, V)] \right) $$
And then using existential instantiation, there exists a set $B$ such that
$$ \forall x \left( x \in B \Longleftrightarrow [ x \in V \wedge \varphi(x, V)] \right) $$
$$ \forall x \left( x \in B \Longleftrightarrow [ x \in V \wedge x \notin x] \right) $$
$$ \forall x \left( x \in B \Longleftrightarrow x \in \{ x \in V \,| x \notin x\} \right) $$
Using, axiom of extensionality, it follows that
$$ B = \{ x \in V \,| x \notin x\} $$
Now, I want to use other ZF axioms to reach my contradiction. How do I proceed ?