0

$21x \equiv 49 \pmod{10}$?

21 % 10 = 1

and

49 % 10 = 9

So we can rewrite this as

$1x \equiv 9 \pmod{10}$

But which theorem shows that we can substitute the LHS & RHS with the remainder?

user93353
  • 466
  • 2
  • 18

1 Answers1

2

If $a \equiv b \pmod{n}$, then $ax \equiv bx \pmod{n}$

Since $21 \equiv 1 \pmod{10}$, we have $21x \equiv x \pmod{10}$.

Also, note that it is an equivalence relation, we have symmetric and transitivity.

Since $21x \equiv x \pmod{10}$ and $21x \equiv 49 \pmod{10}$,

We have $$ x \equiv 49\pmod{10}$$

Again, since $x \equiv 49 \pmod{10}$ and $49 \equiv 9 \pmod{10}$, we have $$x \equiv 9 \pmod{10}.$$

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149