1

Let :

  • $(X_i)_{i \geq 1}$ uniform on $[0,1]$ independants
  • $S_n=\sum_{k=1}^n X_k$
  • $H_n$ is the cumulative fonction of $S_n$
  1. I prove that $H_{n+1}(x)= \int_{x-1}^{x} H_n(t) dt$ for all $x$
  2. I want to deduce from 1. $H_n(x)$ for $0\leq x \leq 1$

The result is given on several topics, like this one. How can I deduce it from 1. ?


My attempt :
For all $x$ :
$ \begin{align*} H_{n+1} (x) &= P(S_{n+1} \leq x) \\ &= P(S_{n} + X_{n+1} \leq x) \\ & = \int_{0}^{1} P( S_n +u \leq x) du \\ &= \int_{0}^{1} P( S_n \leq x-u) du \\ &= \int_{x-1}^{x} P( S_n \leq s) ds \\ &=\int_{x-1}^{x} H_n(s) ds \\ \end{align*} $

$ \begin{align*} H_{n+1} (x)&=\int_{0}^{x} H_n(s) ds \\ H_2(x) &= \frac{x^2}{2} \\ H'_{n+1}&=H_n \\ d^k H_{n+1}&=H_{n+1-k} \\ \forall n \quad H(0)&=0 \\ \end{align*} $

$$P(S_n \leq x) = \frac{ x^n}{ n!} $$

zestiria
  • 877

0 Answers0