Differentiate $\sin^{-1} \sqrt {1-x^2} $ wrt $\cos^{-1} $ if $x\in (-1,0)$
Let $x=\cos y$
Then $f(x)= \sin^{-1} \sqrt{1-\cos^2y}=\sin^{-1} |\sin y| =\pm y$
And $g(x)=\cos^{-1} \cos y =y$
$$\frac{f’(x)}{g’(x)} = \pm 1$$
Since $\sin y$ can be both positive or negative if $\cos y \in (-1,0)$
Which is the right answer?