Let's use the ration test to check the convergence. One has
$$\frac{\left( \frac{(n+1)!}{(n+1)^{n+1}}\right)}{\left( \frac{n!}{n^n}\right)} = \frac{n^n}{(n+1)^n} = \left( 1+ \frac{1}{n}\right)^{-n}$$
which tends to $e^{-1}$. So the radius of convergence is $e$. So the series converges for all $|x|<e$, and diverges for all $|x|>e$.
Now let's study what happened for $x=-e$ and $x=e$. One has, by Stirling formula,
$$\frac{n!}{n^n}e^n \sim \sqrt{2\pi n}$$
So $$\lim_{n \rightarrow +\infty} \frac{n!}{n^n}e^n = +\infty$$
so both series
$$\sum \frac{n!}{n^n}e^n \quad \text{ and } \quad \sum \frac{n!}{n^n}(-e)^n$$
diverge.