Ramanujan is supposed to have given more than five thousand elegant results, a good number of them are yet to be proved or disproved.
Yesterday in the comment section of
Proving that $ \sum_{k=0}^\infty\frac1{2k+1}{2k \choose k}^{-1}=\frac {2\pi}{3\sqrt{3}} $
A wonderful Ramanujan identity $$S=\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}{2k \choose k}^{-1}=\frac{1}{3}(8C-\pi\ln(2+\sqrt{3}))~~~~(1)$$ was showcased, Mathematica also gives this out.
My Attempt to prove (1) by hand:
Note the integral representation of the reciprocal of the binomial co-efficient: $${n \choose j}^{-1}=(n+1)\int_{0}^{1} x^j (1-x)^{n-j}~ dx~~~~(2)$$ $$S=\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}{2k \choose k}^{-1}= \int_{0}^{1} \sum_{k=0}^{\infty} \frac{[x(1-x)]^{k}}{(2k+1)} dx= \int_{0}^{1} \frac{\tanh^{-1}\sqrt{x(1-x)}}{\sqrt{x(1-x)}} dx~~~~(3)$$
The question is: How to get this integral (3) by hand ?