How to reduce the quadratic form $$\sum_{1 \leq k < l \leq n}(k + il)x_kx_l$$ to the canonical form on the $n$-dimensional complex space $\mathbb{C}^n$?
I started with its symmetric matrix \begin{align*} S = \frac{1}{2}\begin{pmatrix} 0 & 1 + 2i & 1 + 3i & \cdots & 1 + ni \\ 1 + 2i & 0 & 2 + 3i & \cdots & 2 + ni \\ 1 + 3i & 2 + 3i & 0 & \cdots & 3 + n i \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 + ni & 2 + ni & 3 + ni & \cdots & 0 \end{pmatrix}, \end{align*} and then tried to reduce it to the diagonal matrix following the algorithmic recipe, i.e., tried reducing it by eliminating the off diagonal elements row/column after row/column: the first step is to clear the first two rows/columns by calculating $P^TSP$, where \begin{align*} P = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -\frac{1 + 3i}{1 + 2i} & \cdots & -\frac{1 + ni}{1 + 2i} \\ 0 & 1 & \frac{1}{2(1 + 2i)} & \cdots & \frac{1}{2(1 + 2i)} \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}. \end{align*} The resultant matrix $P^TSP := (s_{ij})$ has already quite complicated entries: \begin{align*} & s_{kk} = \frac{k^2 - 2 - 3ki}{1 + 2i}, \; k = 3, 4, \ldots, n; \\ & s_{kl} = \frac{k - 2l + 2kl - 4 - li}{2(1 + 2i)}, \; l > k, \end{align*} making the subsequent calculation notoriously nasty, so I am still inconclusive.
Is my attempt on the right track to solve this problem? I think there probably should be a better and cleaner way.