I want to classify all groups of order $12$.
Let $G$ be a group with $|G|=12$. Then $n_3=1$ or $4$.
- If $n_3=4$ then we have $|G:\langle x \rangle |=4$ where $\langle x\rangle$ is a Sylow $3-$ subgroup (not normal in $G$) so we have a homomorphism $r:G\to S_4$ with $ker(r)\subseteq \langle x\rangle$ and $ker(r)\lhd G\Rightarrow ker(r)=\{1\}$ so $G$ is embedded in $S_4$ and has oredr $12$ hence $G\cong A_4$.
- If $n_3=1$ then we have a unique Sylow $3-$ subgroup $P=\langle x\rangle$ and let $H$ a Sylow $2-$subgroup of $G$. Then $G= P\rtimes_u H$ where $u:H\to Aut(P)$ and $Aut(P)=Aut(\langle x\rangle)=\langle \tau\rangle,\ \tau:x\mapsto x^{-1}$, $|Aut(\langle x\rangle)|=2$.
- If $H\cong \mathbb{Z}_4=\langle y\rangle$ then we have $u:\langle y\rangle \to \langle \tau\rangle$
If $u$ is trivial then $u(y)(x)=x$ hence $yxy^{-1}=u(y)(x)=x$ so $G\cong \mathbb{Z}_3\times \mathbb{Z}_4$
If $u(y)(x)=x^{-1}$ then $yxy^{-1}=x^{-1}$ so $G=\langle x,y| \ x^3=y^4=1,\ yxy^{-1}=x^{-1} \rangle$
-If $H\cong \mathbb{Z}_2\times \mathbb{Z}_2=\langle a\rangle \times \langle b\rangle$ then we have $u:\langle a\rangle \times \langle b\rangle\to \langle \tau\rangle$
If $u$ is trivial then $G\cong \mathbb{Z}_3\times\mathbb{Z}_2\times\mathbb{Z}_2$
If $u(a)(x)=x^{-1}$ then $G=\langle a,b,x| \ a^2=b^2=1,\ axa^{-1}=x^{-1},\ bx=xb\rangle$
Hence we have $5$ non isomorphic groups of order $12$
Question 1) Is the above proof correct?
Question 2) I know I should have find $D\cong D_6$ somewhere but maybe I did something wrong or I can't see the prosentations correctly.