Given numbers $a,b,c\in\mathbb N$, say $k$ be the smallest positive linear combination of $\{a,b,c\}$. Now consider $a$, if:
$$ a=kq+r, 0\lt r\lt k, $$
then there exists a smaller positive linear combination of $\{a,b,c\}$, a contradiction, so $r=0$. The idea for $b,c$ is the same, we get $k$ divides $a,b,c$. Let $d=\gcd(a,b,c)$, since $d$ divides $k$ and $k\le d$, $k=d$.
So $\gcd(a,b,c)$ can be defined to be the smallest positive linear combination of $\{a,b,c\}$, but how to find the coefficient of $a,b,c$ respectively?