We define :
- $n \in \mathbb{N}$
- $\mathcal{B}=(e_1 \dots e_n) $ is the initial basis orthonormal
- $A$ is the matrix symmetric real of $f$ in $\mathcal{B}$
- $\mathcal{B'}=(\epsilon_1 \dots \epsilon_n)$ is an orthonormal basis
- $\forall ~ 1\leq i \leq n, ~ f(\epsilon_i)= \lambda_i \epsilon_i$
- $\lambda_n \leq \lambda_{n-1} \dots \leq \lambda_1$
We want to prove that : $$\forall k \leq n, \quad \sum_{j=1}^{k} a_{j,j} \leq \sum_{j=1}^{k} \lambda_j $$
Here are the following steps : $\forall ~ 1 \leq j \leq n$
- $ a_{j,j}\leq \sum_{i=1}^{k} \lambda_i <e_j,\epsilon_i> ^2 + \sum_{i=k+1}^{n} \lambda_k <e_j,\epsilon_i> ^2$
- $ a_{j,j} \leq \sum_{i=1}^{k} ( \lambda_i - \lambda_k )<e_j,\epsilon_i> ^2 + \lambda_k $
- We deduce the claim
My attempt :
- Let $P$ the matrix of transition from $\mathcal{B}$ à $\mathcal{B'}$ $e_j= \sum_{k=1}^{n} p_{jk} \epsilon_k \Rightarrow p_{j,k} = <e_j,\epsilon_k>$ for all $k$
$ \begin{align*} u(e_j) &= u( \sum_{i=1}^{n} <e_j,\epsilon_i> \epsilon_i ) \\ &= \sum_{i=1}^{n} <e_j,\epsilon_i> u( \epsilon_i ) \\ &= \sum_{i=1}^{n} <e_j,\epsilon_i> \lambda_i \epsilon_i \\ &= \sum_{i=1}^{n} <e_j,\epsilon_i> \lambda_i \epsilon_i \end{align*} $
$ \begin{align*} a_{j,j}&=<u(e_j),e_j> \\ &= <e_j, \sum_{i=1}^{n} <e_j,\epsilon_i> \lambda_i \epsilon_i > \\ &= \sum_{i=1}^{n} <e_j,\epsilon_i> \lambda_i <e_j, \epsilon_i > \\ &= \sum_{i=1}^{n} \lambda_i <e_j,\epsilon_i> ^2 \\ &= \sum_{i=1}^{k} \lambda_i <e_j,\epsilon_i> ^2 + \sum_{i=k+1}^{n} \lambda_i <e_j,\epsilon_i> ^2 \\ &\leq \sum_{i=1}^{k} \lambda_i <e_j,\epsilon_i> ^2 + \sum_{i=k+1}^{n} \lambda_k <e_j,\epsilon_i> ^2 \\ \end{align*} $
2.
$ \begin{align*} 1&=\| e_j\| \\ &= \sum_{i=1}^{n} <e_j,\epsilon_i> ^2 \\ \end{align*} $
$ \begin{align*} a_{j,j} &\leq \sum_{i=1}^{k} \lambda_i <e_j,\epsilon_i> ^2 + \sum_{i=k+1}^{n} \lambda_k <e_j,\epsilon_i> ^2 \\ &= \sum_{i=1}^{k} \lambda_i <e_j,\epsilon_i> ^2 + \lambda_k ( 1- \sum_{i=1}^{k} <e_j,\epsilon_i> ^2 \\ &= \sum_{i=1}^{k} ( \lambda_i - \lambda_k )<e_j,\epsilon_i> ^2 + \lambda_k \\ \end{align*} $
- $ \sum_{j=1}^{k} a_{j,j} \leq \sum_{j=1}^{k} \sum_{i=1}^{k} ( \lambda_i - \lambda_k )<e_j,\epsilon_i> ^2 + \sum_{j=1}^{k} \lambda_k $ $ \begin{align*} \sum_{j=1}^{k} a_{j,j} &\leq \sum_{j=1}^{k} \sum_{i=1}^{k} ( \lambda_i - \lambda_k )<e_j,\epsilon_i> ^2 + \sum_{j=1}^{k} \lambda_k \\ &\leq \sum_{j=1}^{k} \sum_{i=1}^{k} ( \lambda_i - \lambda_k )<e_j,\epsilon_i> ^2 + k \lambda_k \\ &= \sum_{i=1}^{k} \sum_{j=1}^{k} ( \lambda_i - \lambda_k )<e_j,\epsilon_i> ^2 + k \lambda_k \\ &= \sum_{i=1}^{k}( \lambda_i - \lambda_k ) \sum_{j=1}^{k} <e_j,\epsilon_i> ^2 + k \lambda_k \\ &\leq \sum_{i=1}^{k}( \lambda_i - \lambda_k ) \sum_{j=1}^{n} <e_j,\epsilon_i> ^2 + k \lambda_k \\ &\leq \sum_{i=1}^{k}( \lambda_i - \lambda_k ) \| e_i\|^2 + k \lambda_k \\ &\leq \sum_{i=1}^{k}( \lambda_i - \lambda_k ) + k \lambda_k \\ &=\sum_{i=1}^{k-1}\lambda_i - (k-1) \lambda_k + k \lambda_k \\ &= \sum_{i=1}^{k-1} \lambda_i + \lambda_k \\ \end{align*} $