I have taken some idea from this proof
Question: Why $\mathbb{R}_\ell$ is first countable?
My attempt : Suppose that $\mathcal{B}$ is a uncountable basis for $\mathbb{R}_{\ell}$. Then, given a point $x$ let $B_{x}\in\mathcal{B}$ be a basis element such that $x\in B_{x}\subseteq[x,x+\frac{1}{n})$. Then if $x\neq y$ we have that $B_{x}\neq B_{y}$. but $\inf B_{x}=x$ and $\inf B_{y}=y$.
Now take $y\in B_{x}\subseteq[x,x+\frac{1}{m})$.
We have $\inf B_{x}=\lim_{n\to \infty}B_x$ and $\inf B_{y}=\lim_{n\to \infty}B_y$, then here $\inf B_{x}=\inf B_{y} \space (\because \space \lim_{n\to \infty} \frac{1}{n}= \lim_{m\to \infty} \frac{1}{m})$.
From this we can said that there is no injective function from $\mathbb{R}_{\ell}$ to $\mathcal{B}$ defined by $x\mapsto B_{x}$.
$ \implies\mathcal{B}$ must be countable basis for $\mathbb{R}_{\ell}$.
$ \therefore \mathbb{R}_\ell$ is first countable .