Let $A: L^2[0,2\pi] \to L^2[0,2\pi]$ be defined by $Au=v$ if
$v(x)=\int^{2\pi}_{0} cos(x+t)u(t)dt$
(a) Find the point spectrum, eigenspace, residual spectrum, continuous spectrum, and spectrum
(b) Suppose $\lambda^{-1} \not\in \sigma(T)$ and $g \in L^2[a,b]$. Obtain an explicit form for the solution of $u=g+\lambda Au$ and write it in the form $u(x)=\phi(x)+\int^{2\pi}_{0}\Gamma(\lambda,x,t)\phi(t)dt$