9

A nice challenge by Cornel Valean:

Show that

$$2\sum _{n=1}^{\infty }\frac{2^{4 n}}{\displaystyle n^3 \binom{2 n}{n}^2}-\sum _{n=1}^{\infty }\frac{2^{4 n}}{\displaystyle n^4 \binom{2 n}{n}^2}+\sum _{n=1}^{\infty }\frac{2^{4 n} H_n^{(2)}}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2}=\frac{\pi^3}{3}.$$

I have to say that I am not experienced in series involving squared central binomial coefficient, so I leave it for people who are experts in such series.

All approaches are appreciated. Thank you.

Ali Shadhar
  • 25,498
  • 2
    $$\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi \Im(\text{Li}_3(1+i))+64 \text{Li}_4\left(\frac{1}{2}\right)-\frac{233 \pi ^4}{90}+\frac{8 \log ^4(2)}{3}-\frac{20}{3} \pi ^2 \log ^2(2)$$ – Infiniticism Aug 19 '20 at 04:19
  • 2
    $$\sum _{n=1}^{\infty } \frac{16^n H_n^{(2)}}{\left(n^2 (2 n+1)\right) \binom{2 n}{n}^2}=-16 \pi C+64 \pi \Im(\text{Li}_3(1+i))+64 \text{Li}_4\left(\frac{1}{2}\right)+28 \zeta (3)+\frac{\pi ^3}{3}-\frac{233 \pi ^4}{90}+\frac{8 \log ^4(2)}{3}-\frac{20}{3} \pi ^2 \log ^2(2)$$ Enjoy! – Infiniticism Aug 19 '20 at 04:19
  • 1
    @User 628759 of course if you find the closed forms of the first and second sums , the closed form of the third sum follows from subtracting the first two sums from $\pi^3/3$ :) . – Ali Shadhar Aug 19 '20 at 05:31
  • 1
    @User 628759 yes but you need a whole article to do so. – Ali Shadhar Aug 19 '20 at 07:43
  • @Ali Shather I must admit that after having seen a lot of "precious stones" solved impressively one by one by "artists" like you and others who I adore very much I am gradually becoming interested in a systematic approach which also shows what's a repetion and what's really new. – Dr. Wolfgang Hintze Aug 19 '20 at 16:06
  • @Dr. Wolfgang Hintze good to see you back Wolf. Thank you for the kind words. Yes , I agree with you that systematic approach is very powerful and it cracks many advanced Integrals and series and it deserves more attention but its just not my type with my due respect to the hard work and its importance. Math is boring for me without art and struggling. Plus I highly care for how easily most readers understand solutions and how useful they see them. – Ali Shadhar Aug 19 '20 at 17:48
  • @Dr.WolfgangHintze thank you Wolf i will. – Ali Shadhar Aug 20 '20 at 10:18

3 Answers3

6

This is a possible approach. The sum of the OP can be rewritten as

$$I=\sum _{n=1}^{\infty }\frac{2n\cdot 2^{4 n}}{\displaystyle n^4\binom{2 n}{n}^2}-\sum _{n=1}^{\infty }\frac{2^{4 n}}{\displaystyle n^4 \binom{2 n}{n}^2}+\sum _{n=1}^{\infty }\frac{n^2\, 2^{4 n} H_n^{(2)}}{\displaystyle n^4 (2 n+1) \binom{2 n}{n}^2}\\ = \sum _{n=1}^{\infty }\frac{2^{4 n}[(2n-1)(2n+1)+n^2H_n^{(2)}]}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2} \\ = \sum _{n=1}^{\infty }\frac{2^{4 n}(4n^2-1+n^2H_n^{(2)})}{\displaystyle n^4 (2 n+1) \binom{2 n}{n}^2} \\ = \sum _{n=1}^{\infty }\frac{2^{4 n}(4-1/n^2+H_n^{(2)})}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2} \\ = \sum _{n=1}^{\infty }\frac{2^{4 n}(4+H_{n-1}^{(2)})}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2} \\ = \sum _{n=1}^{\infty }\frac{2^{4 n} \, (n!)^4\, (4+H_{n-1}^{(2)})}{\displaystyle n^2(2 n+1)(2n!)^2} \\ = \sum _{n=1}^{\infty }\frac{ (2n!!)^4\, (4+H_{n-1}^{(2)})}{\displaystyle n^2(2 n+1)(2n!)^2} \\ = \sum _{n=1}^{\infty }\frac{ (2n!!)^2\, (4+H_{n-1}^{(2)})}{\displaystyle n^2 (2 n+1)(2n-1!!)^2} \\ = 4 \,\, \underbrace{ \sum _{n=1}^{\infty } \frac{ (2n!!)^2}{\displaystyle n^2 (2 n+1)(2n-1!!)^2} }_\text{J} \\ +\underbrace{\sum _{n=1}^{\infty } \sum_{k=1}^{n-1} \frac{ (2n!!)^2}{\displaystyle n^2 (2 n+1)(2n-1!!)^2} \frac{1}{k^2}}_\text{K} \\ $$


So we have $I=4J+K$. Let us consider firstly the terms of the $J$ summation. For given $n$, the corresponding summand $j_n$ is given by

$$j_n=\frac{1}{n^2} \prod_{k=1}^n \frac{4 k^2}{(2 k- 1) (2 k + 1)} \\=\frac{1}{n^2}\left(\frac 21\cdot \frac 23 \right)\cdot \left(\frac 43\cdot \frac 45 \right)... \cdot \left(\frac{2n}{2n-1}\cdot \frac {2n}{2n+1}\right)$$

where the infinite product resembles the classical Wallis formula for $\pi/2$. Note that the terms satisfy the recurrence

$$j_{n+1}=j_n \frac{n^2(2n+2)^2}{(n+1)^2(2n+1)(2n+3)}\\ = j_n \frac{4n^2}{(2n+1)(2n+3)} $$

and that they can be written in the form

$$j_n=\frac{\pi \,Γ^2(n + 1)}{2 n^2\, Γ(n + \frac 12) Γ(n + \frac 32)}$$

Moreover, the terms in the $J$ summation satisfies the interesting property

$$\sum_{n=1}^m j_n=4m^2 j_m-4$$

We will prove it by induction. For $m=1$, the sum reduces to the single term $j_1=4/3$, and accordingly $4 \cdot 1^2\cdot 4/3-4=4/3$. Now let us assume that the property is valid for a given $m$. Passing to $m+1$, the sum becomes

$$\sum_{n=1}^{m+1} j_n=4m^2 j_m-4 +j_{m+1}\\ =4m^2 \frac{(2m+1)(2m+3)} {m^2}j_{m+1}-4+j_{m+1} \\ = (4n^2+8n+3) j_{m+1}-4+j_{m+1}\\ = (4n^2+8n+4) j_{m+1}-4 \\ = 4(m+1)^2 j_{m+1}-4 $$

so that the property is still valid for $m+1$, and the claim is proved. Then we have

$$\sum_{n=1}^m j_n= \frac{2\pi \,\Gamma^2(n + 1)}{ \Gamma(n + \frac 12 ) \Gamma(n + \frac 32 )}-4 $$

Taking the limit for $m\rightarrow \infty$, since

$$\lim_{m\rightarrow \infty} \frac{\Gamma^2(m + 1)}{ \Gamma(m + \frac 12 ) \Gamma(m + \frac 32 )}=1$$

we have

$$J= \sum_{n=1}^\infty j_n = 2\pi-4$$

in accordance with the numerical approximation of $J \approx 2.283$ given by WA here.


For the double summation $K$, writing it again in terms of Gamma functions as already done for $J$, using the same definition of $j_n$ given above, and swapping the indices we have

$$K=\sum _{k=1}^{\infty } \sum_{n=k+1}^{\infty} j_n \cdot \frac{1}{k^2}\\ =\sum _{k=1}^{\infty } \frac{1}{k^2} \sum_{n=1}^{\infty} j_n - \sum _{k=1}^{\infty } \frac{1}{k^2} \sum_{n=1}^{k} j_n \\ = \frac{\pi^2}{6} (2\pi-4) -\sum _{k=1}^{\infty } \frac{1}{k^2} \left[ \frac{2\pi \,\Gamma^2(k + 1)}{ \Gamma(k + \frac 12 ) \Gamma(k + \frac 32 )}-4\right] \\ = \frac{\pi^3}{3} - \frac{2\pi^2}{3}+ 4\sum _{k=1}^{\infty } \frac{1}{k^2} \\ -\sum _{k=1}^{\infty } \left[ \frac{2\pi \,\Gamma^2(k + 1)}{ k^2\Gamma(k + \frac 12 ) \Gamma(k + \frac 32 )}\right] $$

and since the last summation is equivalent to $4\sum_{n=1}^\infty j_n$,

$$K=\frac{\pi^3}{3} -4(2\pi-4)$$


We then conclude that

$$I=4J+K \\=4(2\pi-4) + \frac{\pi^3}{3} -4(2\pi-4) = \frac{\pi^3}{3}$$

Anatoly
  • 17,079
5

Here's a simple way to prove (with the manipulation of well-known generating functions and integrals) that:

$$S=2\sum _{k=1}^{\infty }\frac{16^k}{k^3\binom{2k}{k}^2}-\sum _{k=1}^{\infty }\frac{16^k}{k^4\binom{2k}{k}^2}+\sum _{k=1}^{\infty }\frac{16^kH_k^{\left(2\right)}}{k^2\left(2k+1\right)\binom{2k}{k}^2}=\frac{\pi ^3}{3}.$$

First let's make use of the following generating function: $$\sum _{k=1}^{\infty }\frac{4^kx^{2k}}{k^2\binom{2k}{k}}=2\arcsin ^2\left(x\right)$$ $$\sum _{k=1}^{\infty }\frac{4^ky^{2k}}{k^3\binom{2k}{k}}=4\int _0^y\frac{\arcsin ^2\left(x\right)}{x}\:dx$$ $$2\sum _{k=1}^{\infty }\frac{4^k}{k^3\binom{2k}{k}}\int _0^{\frac{\pi }{2}}\sin ^{2k-1}\left(y\right)\:dy=8\int _0^{\frac{\pi }{2}}\csc \left(y\right)\int _0^{\sin \left(y\right)}\frac{\arcsin ^2\left(x\right)}{x}\:dx\:dy$$ $$\boxed{\sum _{k=1}^{\infty }\frac{16^k}{k^4\binom{2k}{k}^2}=8\int _0^{\frac{\pi }{2}}\csc \left(y\right)\int _0^yx^2\cot \left(x\right)\:dx\:dy}.$$ Now let's jump into the $3$rd series by first considering the same generating function used previously: $$\sum _{k=1}^{\infty }\frac{4^kx^{2k}}{k^2\binom{2k}{k}}=2\arcsin ^2\left(x\right)$$ $$\sum _{k=1}^{\infty }\frac{4^k}{k^3\left(2k+1\right)\binom{2k}{k}}t^{2k}=4\int _0^t\left(2\frac{\sqrt{1-y^2}\arcsin \left(y\right)}{y^2}-2\frac{1}{y}+\frac{\arcsin ^2\left(y\right)}{y}\right)\:dy$$ $$\sum _{k=1}^{\infty }\frac{16^k}{k^4\left(2k+1\right)\binom{2k}{k}^2}=8\int _0^{\frac{\pi }{2}}\csc \left(t\right)\int _0^t\left(2x\cot ^2\left(x\right)-2\cot \left(x\right)+x^2\cot \left(x\right)\right)\:dx\:dt$$ $$\boxed{\sum _{k=1}^{\infty }\frac{16^k}{k^4\left(2k+1\right)\binom{2k}{k}^2}=16\int _0^{\frac{\pi }{2}}\csc \left(t\right)\left(1-t\cot \left(t\right)\right)\:dt-8\int _0^{\frac{\pi }{2}}t^2\csc \left(t\right)\:dt+\sum _{k=1}^{\infty }\frac{16^k}{k^4\binom{2k}{k}^2}}.$$ Lastly consider: $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k\binom{2k}{k}}x^{2k}-\sum _{k=1}^{\infty }\frac{4^k}{k^3\binom{2k}{k}}x^{2k}=\frac{4}{3}\frac{x\arcsin ^3\left(x\right)}{\sqrt{1-x^2}}$$ $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k\left(2k+1\right)\binom{2k}{k}}y^{2k+1}-\sum _{k=1}^{\infty }\frac{4^k}{k^3\left(2k+1\right)\binom{2k}{k}}y^{2k+1}=\frac{4}{3}\int _0^y\frac{x\arcsin ^3\left(x\right)}{\sqrt{1-x^2}}\:dx$$ $$\sum _{k=1}^{\infty }\frac{16^kH_k^{\left(2\right)}}{k^2\left(2k+1\right)\binom{2k}{k}^2}-\sum _{k=1}^{\infty }\frac{16^k}{k^4\left(2k+1\right)\binom{2k}{k}^2}=\frac{8}{3}\int _0^{\frac{\pi }{2}}\csc ^2\left(y\right)\int _0^{\sin \left(y\right)}\frac{x\arcsin ^3\left(x\right)}{\sqrt{1-x^2}}\:dx\:dy$$ $$\boxed{\sum _{k=1}^{\infty }\frac{16^kH_k^{\left(2\right)}}{k^2\left(2k+1\right)\binom{2k}{k}^2}=\frac{8}{3}\int _0^{\frac{\pi }{2}}x^3\cos \left(x\right)\:dx+\sum _{k=1}^{\infty }\frac{16^k}{k^4\left(2k+1\right)\binom{2k}{k}^2}}.$$ And finally from here we know that: $$\sum _{k=1}^{\infty }\frac{16^k}{k^3\binom{2k}{k}^2}=4\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\:dx,$$ plugging these results into the main expression we obtain: $$S=\require{cancel}\cancel{8\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\:dx}-\cancel{\sum _{k=1}^{\infty }\frac{16^k}{k^4\binom{2k}{k}^2}}+\frac{8}{3}\int _0^{\frac{\pi }{2}}x^3\cos \left(x\right)\:dx$$ $$\require{cancel}+16\int _0^{\frac{\pi }{2}}\csc \left(t\right)\left(1-t\cot \left(t\right)\right)\:dt-\cancel{8\int _0^{\frac{\pi }{2}}t^2\csc \left(t\right)\:dt}+\cancel{\sum _{k=1}^{\infty }\frac{16^k}{k^4\binom{2k}{k}^2}}.$$ Therefore: $$S=2\sum _{k=1}^{\infty }\frac{16^k}{k^3\binom{2k}{k}^2}-\sum _{k=1}^{\infty }\frac{16^k}{k^4\binom{2k}{k}^2}+\sum _{k=1}^{\infty }\frac{16^kH_k^{\left(2\right)}}{k^2\left(2k+1\right)\binom{2k}{k}^2}$$ $$=\frac{8}{3}\int _0^{\frac{\pi }{2}}x^3\cos \left(x\right)\:dx+16\int _0^{\frac{\pi }{2}}\csc \left(t\right)\left(1-t\cot \left(t\right)\right)\:dt=\frac{\pi ^3}{3},$$ and that is it.

Jorge Layja
  • 1,101
3

An excellent answer was already given (the chosen one), but good to have more ways in place.

A solution by Cornel Ioan Valean

Instead of calculating all three series separately, we might try to calculate them all at once. So, we have that $$2\sum _{n=1}^{\infty }\frac{2^{4 n}}{\displaystyle n^3 \binom{2 n}{n}^2}-\sum _{n=1}^{\infty }\frac{2^{4 n}}{\displaystyle n^4 \binom{2 n}{n}^2}+\sum _{n=1}^{\infty }\frac{2^{4 n} H_n^{(2)}}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2}$$ $$=\sum _{n=1}^{\infty }\frac{2^{4n} (4n^2-1+n^2 H_n^{(2)})}{\displaystyle n^4 (2 n+1) \binom{2 n}{n}^2}=\sum _{n=1}^{\infty }\frac{2^{4n} (4-1/n^2+ H_n^{(2)})}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2}$$ $$=\sum _{n=1}^{\infty }\frac{2^{4n}(4-1/n^2+ H_n^{(2)}\color{blue}{+(4 n^2-1) H_{n-1}^{(2)}}-\color{blue}{(4 n^2-1) H_{n-1}^{(2)}})}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2}$$ $$=\sum _{n=1}^{\infty }\frac{2^{4n}(\color{red}{4n^2H_n^{(2)}}-\color{blue}{(4 n^2-1) H_{n-1}^{(2)}})}{\displaystyle n^2 (2 n+1) \binom{2 n}{n}^2}$$ $$=\sum _{n=1}^{\infty}\left(\frac{2^{4n+2}H_n^{(2)}}{\displaystyle (2n+1) \binom{2 n}{n}^2}-\frac{2^{4n}(2n-1)H_{n-1}^{(2)} }{\displaystyle n^2\binom{2 n}{n}^2}\right)$$ $$=\lim_{N\to\infty}\sum _{n=1}^{N}\left(\frac{2^{4n+3}H_n^{(2)}}{\displaystyle (n+1) \binom{2 n+2}{n+1}\binom{2 n}{n}}-\frac{2^{4n-1}H_{n-1}^{(2)} }{\displaystyle n\binom{2 n}{n}\binom{2 n-2}{n-1}}\right)$$ $$=\lim_{N\to\infty}\frac{2^{4N+3}H_N^{(2)}}{\displaystyle (N+1) \binom{2 N+2}{N+1}\binom{2 N}{N}}=\frac{\pi^3}{3},$$

where we used the asymptotic form of the central binomial coefficient, $\displaystyle \binom{2 N}{N}\sim \frac{4^N}{\sqrt{\pi N}}$.

Ali Shadhar
  • 25,498
user97357329
  • 5,319