Below I sketch a nice way to view such inductions - which simplifies comprehension of the proof.
Let $\,P_N := [\![\, a^N\equiv_N 1\ \,\&\,\ \color{#0a0}{a^j}+\color{#90f}j\equiv_N \color{#0a0}{a^k}+\color{#90f}k\,]\!]\,$ and $\,Q_N := [\![\, j\equiv_N k\,]\!]$
If $\,P_N\,$ is true then $\, \color{#90f}{j\equiv_N k}\!\iff\! \color{#0a0}{a^j\equiv_N a^k}\!\iff\! j\equiv_{n} k,\,$ for $\, n:={\rm ord}_N(a),\,$ by here.
hence $\,P_N\overset{\color{#c00}{(\#)}}\Rightarrow P_{n}\overset{\rm induct}\Longrightarrow Q_{n}\overset{\rm above}\Rightarrow Q_N,\,$ i.e. $\,P_N\Rightarrow Q_N,\,$ as pictured below. $ $ QED
$$\large \require{AMScd}
\require{rotating}
\begin{CD}
P_n @>\rm \color{c00}{induct} >> Q_n\\
@A \rm I.3\ AA\lower.5ex\smash{\Huge\curvearrowright} @VV \ \rm I.4 V\\
P_N @>> > Q_N
\end{CD}\qquad$$
Note $\,P_N\overset{\color{#c00}{(\#)}}\Rightarrow P_{n}\,$
i.e. $ \begin{align} &a^N\!\!\equiv_N\! 1\ \,\&\,\ a^j+j\equiv_N\! a^k+k\\
\Rightarrow \ & a^n\equiv_n 1_{\phantom{|}} \,\&\,\ a^j+j\equiv_n a^k+k \end{align}\,$ by $\, n\! =\!{\rm ord}_N a\Rightarrow a^n\!\equiv_N\! 1\Rightarrow a^n\!\equiv_n\! 1\,$ by congruence persistence at mod factors, by $\,n\mid N\,$ by here; similarly 2nd congruence persists.
Remark $ $ Below is the general induction schema we employed.
Implication Induction $ $ The implication $\, P_N\Rightarrow Q_N\,$ is true for all integers $\,N\ge 1\,$ if
${\rm[\![\,I.1\,]\!]}\ $ it is true for $\,N=1,\,$ i.e. $\,P_1\Rightarrow Q_1\ $ (Base Case)
${\rm[\![\,I.2\,]\!]}\ \ P_N\,$ implies there is a smaller integer $\,n,\,$ i.e. $\,1\le n < N,\,$ such that
$\qquad{\rm[\![\,I.3\,]\!]}\ \ P_N\Rightarrow P_n,\, $ and
$\qquad{\rm[\![\,I.4\,]\!]}\ \ P_N\ \&\ Q_n\Rightarrow Q_N$