Let $U$ be a finite-dimensional unitary space and let $A,B\in\mathcal L(U)$ s. t. $B^*A=0$. Prove that: $$\ker(A+B)=\ker A\cap\ker B.$$
note: $B^*$ denotes the Hermitian adjoined operator of $B$.
My thoughts:
Since $\operatorname{im}B^*=(\ker B)^\perp$ as proven here, then we can also state $\operatorname{im} B=(\ker B^*)^\perp$.
$B^*A=0\implies\operatorname{im}A\leqslant\ker B^*=(\operatorname{im} B)^\perp\iff\ker A\geqslant\operatorname{im} B$. In case of $\operatorname{im}B\subset\ker A,\dim(\ker A\cap\ker B)\geqslant 1$.
If we take an arbitrary $x\in\operatorname{im}B$, then $(A+B)x=Ax+Bx=0+Bx\ne0$, so $\begin{aligned}(A+B)x=0&\iff Ax=0\ \land Bx=0\\&\iff x\in\ker A\cap\ker B,\end{aligned}$
but I don't think this sketch is concise enough to work as proof.
May I ask for advice on how to solve this task?
Thank you in advance!