(I'm sorry for the vague title...please feel free to edit it, but I couldn't come up with a different title that wasn't super long and still captured the question).
Question:
I originally asked this...
Do commuting matrices with real and complex eigenvectors still share eigenvectors?
...question, which I think was well answered, but from it now I have a more general one.
Say we have some reason to believe that two matrices, $A$ and $B$, share eigenvectors. However, we end up finding out that $A$ has all real eigenvectors, while $B$ has eigenvectors with complex components.
Will vectors holding the real parts of the complex components eigenvectors of $B$ always be eigenvectors of $A$?
If they are, why? If not, what CAN we say about the relationship between the eigenvectors of $B$ and the eigenvectors of $A$?
Thanks!
Example:
As an example (like the one in the question linked above), say that two matrices commute. Commuting matrices share eigenvectors. However, the eigenvectors of one matrix are real, while the eigenvectors of the other are complex.
As a different example, consider a circulant $C$ matrix, formed via a linear combination of the single row permutation matrix $P$.
$P=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$
$C=\left[\begin{array}{llll}c_{0} & c_{1} & c_{2} & c_{3} \\ c_{3} & c_{0} & c_{1} & c_{2} \\ c_{2} & c_{3} & c_{0} & c_{1} \\ c_{1} & c_{2} & c_{3} & c_{0}\end{array}\right]$
$C=c_{0} P^{0}+c_{1} P^{1}+c_{2} P^{2}+c_{3} P^{3}$
From that last equation, we can see that they would share eigenvectors. However, as shown in the linked question, its possible that $C$ has real eigenvectors, while $P$ has complex ones.
(And then the eigenvectors of the permutation matrix hold the roots of unity, which is explained in this pdf linked here: http://perrylocal.org/meinkea/files/2010/10/Circulant-Matrices.pdf)