Yes. In dimension $\geq 2$ this is trivial, so I assume we are looking at the real line.
Given an $n>0$ and $\alpha\in [0,1]$, put $U'_{n,\alpha}=(\frac{1}{n+1},\frac{1}{n+1}+\alpha(\frac{1}{n}-\frac{1}{n+1}))$ and $U_{n,\alpha}=U'_{n,\alpha}\cup -U'_{n,\alpha}$.
Put $U_\alpha=\bigcup_{n\geq 1} U_{n,\alpha}$. Then the density of $U_{n,\alpha}$ at $0$ is exactly $\alpha$. To see this, write $m(r)$ $$m(r):=\dfrac{\lambda(U_\alpha\cap (-r,r))}{2r}$$ and note that:
- if $r\in \left(\frac{1}{n+1},\frac{1}{n+1}+\alpha(\frac{1}{n}-\frac{1}{n+1})\right)$, then $m\left(\frac{1}{n+1}\right)\leq m(r)\leq m\left(\frac{1}{n+1}+\alpha(\frac{1}{n}-\frac{1}{n+1})\right)$,
- if $r\in \left(\frac{1}{n+1}+\alpha(\frac{1}{n}-\frac{1}{n+1}),\frac{1}{n}\right)$, then $m\left(\frac{1}{n}\right)\leq m(r)\leq m\left(\frac{1}{n+1}+\alpha(\frac{1}{n}-\frac{1}{n+1})\right)$,
- $m\left(\frac{1}{n}\right)=\alpha$,
- $m\left(\frac{1}{n+1}+\alpha(\frac{1}{n}-\frac{1}{n+1})\right)\leq m\left({\frac{1}{n+1}}\right)+n\alpha(\frac{1}{n}-\frac{1}{n+1})=\alpha+\frac{\alpha}{n+1}$.