$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\sum_{n = 1}^{\infty}{2^{2n}H_{n + 1} \over
\pars{n + 1}^{2}{2n \choose n}}} =
\sum_{n = 2}^{\infty}H_{n}\,{4^{n - 1} \over
n^{2}{2n - 2 \choose n - 1}} =
-1 + \sum_{n = 1}^{\infty}
H_{n}\,{4^{n - 1} \over n^{2}}\,{\Gamma\pars{n}\Gamma\pars{n} \over
\Gamma\pars{2n - 1}}
\\[5mm] = &\
-1 + \sum_{n = 1}^{\infty}
H_{n}\, 4^{n - 1}\pars{{2 \over n} - {1 \over n^{2}}}\,{\Gamma\pars{n}\Gamma\pars{n} \over\Gamma\pars{2n}}
\\[5mm] = &\
-1 +
2\sum_{n = 1}^{\infty}H_{n}\, 4^{n - 1}
\pars{\int_{0}^{1}x^{n - 1}\,\dd x}
\int_{0}^{1}y^{n - 1}\pars{1 - y}^{n - 1}\,\dd y
\\[2mm] &\
-\sum_{n = 1}^{\infty}H_{n}\, 4^{n - 1}
\bracks{-\int_{0}^{1}\ln\pars{x}x^{n - 1}\,\dd x}
\int_{0}^{1}y^{n - 1}\pars{1 - y}^{n - 1}\,\dd y
\\[5mm] = &\
-1 +
2\int_{0}^{1}\int_{0}^{1}
\sum_{n = 1}^{\infty}H_{n}\pars{4xy \over 1 - y}^{n - 1}
\,\dd x\,\dd y
\\[2mm] &\
+ \int_{0}^{1}\ln\pars{y}\int_{0}^{1}
\sum_{n = 1}^{\infty}H_{n}\, \pars{4xy \over 1 - y}^{n - 1}
\,\dd x\,\dd y
\\[5mm] = &\
-1 +
2\int_{0}^{1}\int_{0}^{4y/\pars{1 - y}}
\sum_{n = 1}^{\infty}H_{n}x^{n - 1}\,
{1 - y \over 4y}\,\dd x\,\dd y
\\[2mm] &\
+ \int_{0}^{1}\ln\pars{y}\int_{0}^{4y}
\sum_{n = 1}^{\infty}H_{n}\, x^{n - 1}\,{y - 1 \over 4y}
\,\dd x\,\dd y
\\[5mm] = &\
-1 +
{1 \over 2}\int_{0}^{1}{1 - y \over y}\int_{0}^{4y/\pars{1 - y}}
\bracks{-\,{\ln\pars{1 - x} \over 1 - x}}
\,{\dd x \over x}\,\dd y
\\[2mm] &\
+ {1 \over 4}\int_{0}^{1}{\pars{1 - y}\ln\pars{y} \over y}\int_{0}^{4y/\pars{1 - y}}
\bracks{-\,{\ln\pars{1 - x} \over 1 - x}}
\,{\dd x \over x}\,\dd y
\\[5mm] = &\
-1 - {1 \over 2}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}}
\int_{0}^{x/\pars{x + 4}}{1 - y \over y}\,\dd y\,\dd x
\\[2mm] &\
- {1 \over 4}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}}
\int_{0}^{x/\pars{x + 4}}{\pars{1 - y}\ln\pars{y} \over y}
\,\dd y\,\dd x
\\[5mm] = &\
-1 - {1 \over 4}\int_{0}^{1}{\ln\pars{1 - x} \over x\pars{1 - x}}
\int_{0}^{x/\pars{x + 4}}
{\pars{1 - y}\bracks{2 + \ln\pars{y}} \over y}\,\dd y\,\dd x
\end{align}
The $\ds{y}$-integration becomes:
$$
-2\ln\pars{x \over 4 + x} -
{1 \over 2}\ln^{2}\pars{x \over 4 + x} -
{4 \over 4 + x} - {x \over 4 + x}\ln\pars{4 + x \over x}
$$
It seems to be a nasty job !!!. I hope somebody else can take it from here.