Consider complex plane and unit sphere $\mathbb{S}^1 = \lbrace z \in \mathbb{C} : |z|^2 = 1 \rbrace$. It is quite simple that for example by a parameterization, we have
$$\int_{\mathbb{S}^1} z\, d z = \int_{0}^{2\pi} e^{i \theta} \, d\theta = 0.$$
Same goes for $z^k$ where $k \in \mathbb{N}$. I'm wondering, how does it work in higher dimensions. So consider $\mathbb{C}^2$ and a unit sphere $\mathbb{S}_{\mathbb{C}}^2 = \lbrace z \in \mathbb{C}^2 : |z_1| ^2 +|z_2|^2 = 1 \rbrace$ (which I think works like $\mathbb{S}^3 \subset \mathbb{R}^4$, right?) equipped with an $SO(4)$-invariant measure d$m$. How can I calculate for example
$$\int_{\mathbb{S}_{\mathbb{C}}^2} z_1{z_2}^2\, dm?$$
Can I find the right parameterization there, too? Or should I translate this to real numbers and use spherical coordinates?