Please point out what is wrong with this calculation:
$i^2= (i) (i) $
$=\sqrt{-1} \sqrt{-1} $
$= (-1)^{1/2} (-1)^{1/2} $
$=((-1)(-1))^{1/2}$
$=1^{1/2}$
$=1$
Please point out what is wrong with this calculation:
$i^2= (i) (i) $
$=\sqrt{-1} \sqrt{-1} $
$= (-1)^{1/2} (-1)^{1/2} $
$=((-1)(-1))^{1/2}$
$=1^{1/2}$
$=1$
It is due to this ambiguity the definition of separation of root is given as:
$$ \sqrt{ab} =\sqrt{a} \sqrt{b}$$
Only if, a > 0 & b > 0.
For example:
$ \sqrt{3.5}$
=$ \sqrt{(-3).(-5)}$
=$ \sqrt{(-3)}.\sqrt{(-5)}$
=$ \sqrt{(3)}i.\sqrt{(5)}i$
=$ \sqrt{(3)}.\sqrt{(5)}i.i$
=$ (-1)\sqrt{(3)}.\sqrt{(5)}$
=$(-1)\sqrt{3.5}$
Thus x = -x, which is wrong. Therefore separation of a root power is not defined for negative numbers.