0

I have tried to reduce it to $(6^3)^{171} \equiv 16^{171} \pmod {100}$. I am not completely familiar with Euler' theorem but I have done this:$16^{171}\equiv (16^{40})^4 \cdot16^{11}\equiv 16^{11} \pmod {100}$. How do I continue from here?

Moreover is there a more systematic method for solving this? Thanks in advance!

Alessio K
  • 10,599
siegfried
  • 238
  • 1
  • 7
  • 1
    Hint: $16^{11} = (10+6)^{11}$. – luxerhia Aug 13 '20 at 13:24
  • 1
    https://math.stackexchange.com/questions/1844558/how-to-find-last-two-digits-of-22016 – lab bhattacharjee Aug 13 '20 at 13:25
  • 1
    6^8 is congruent to 16 mod 100, and so is 6^13 and so is 6^3 and so is 6^18 so is... – Mars Aug 13 '20 at 13:29
  • It seems that you already used $$ 16^{40}\equiv 1\pmod{100}$$ So you can proceed with $$16^{11}\equiv (2^4)^{11}\equiv 2^{40}2^4\equiv 16 \pmod{100}$$ – miracle173 Aug 13 '20 at 13:53
  • 2
    $16^{40}\neq 1\pmod{100}$ that is because $gcd(16,100)\neq 1$ but you do have $16^{41}=16\pmod{100}$. The result doesn't change though. – kingW3 Aug 13 '20 at 14:01
  • 1
    $(1+5)^{513}\equiv1+513\times5+513\times5^{512}+5^{513}\equiv 1+65+13\times25+25\equiv16\bmod100$ – J. W. Tanner Aug 13 '20 at 15:21
  • @J.W.Tanner I agree that $4$ divides $\binom{513}{k}$ for $2 \le k \le 511$, but how do you prove it? – CopyPasteIt Jan 16 '23 at 22:59
  • @CopyPasteIt: actually $4$ does not divide $\binom{513}{256}$; I don't know what I was thinking – J. W. Tanner Jan 17 '23 at 00:26
  • @J.W.Tanner Yes, $\binom{513}{256}5^{256} \equiv 50 \pmod{100}$ and $\binom{513}{257}5^{257} \equiv 50 \pmod{100}$ and all works, but difficult to see (your calculation expression is $1 + 65 + 50 + 50 + 25 + 25$). – CopyPasteIt Jan 17 '23 at 02:49
  • @CopyPasteIt: $(1+5)^{513}\equiv1+513\times5\equiv1+13\times5=66\equiv16\bmod25$ and $6^{513}\equiv0\bmod4$ and now apply the Chinese Remainder Theorem – J. W. Tanner Jan 17 '23 at 03:28
  • @J.W.Tanner I tried my hand at putting out your original idea... – CopyPasteIt Jan 18 '23 at 01:47

6 Answers6

2

Use the Chinese remainder theorem: $$\mathbf Z/100\mathbf Z\simeq \mathbf Z/4\mathbf Z\times \mathbf Z/25\mathbf Z.$$ Now $6^2\equiv 0\bmod 4$, so $6^n\equiv 0$ for any $n\ge 2$.

On the other hand, $6$ has order $5\bmod 25$, so $$6^{513}\equiv 6^{513\bmod 5}=6^3\equiv 16\mod 25.$$ Also, a Bézout's relation between $4$ and $25$ is $\:25-6\cdot 4=1$, so by the inverse isomorphism, $$6^{513}\equiv0\cdot 25-16\cdot 6\cdot 4=-384\equiv 16\mod 100.$$

Bernard
  • 175,478
1

Hint: $6^{n+5} \equiv 6^n \bmod 100$ for $n\ge2$

lhf
  • 216,483
  • 3
    Which means $6^{n+5k}\equiv 6^n \bmod 100$ for $n\ge 2$. So $6^{513}\equiv 6^3 \bmod 100$ – Keith Backman Aug 13 '20 at 14:39
  • Thank you @Ihf and @Keith! That is a systematic method I have been looking for. My lecturer has done something similar in finding a repeating pattern of residuals of 6^n mod100, but failed to mention the subsequent part on reducing mod in the power of the base. – siegfried Aug 14 '20 at 01:40
1

Like How to find last two digits of $2^{2016}$

as $(6^m,100)=4$ for $m\ge2$

$$6^{5n+1}=(1+5)^{5n+1}\equiv1+\binom{5n+1}15\pmod{25}\equiv6$$

$$\implies6^{5m+3}\equiv6\cdot6^2\pmod{25\cdot6^2}\equiv216\pmod{100}\text{ as }100 \text{ divides }25\cdot6^2$$

1

Hints:

$6^n\equiv0\bmod4 $ for $n\ge2$

$6^3=216\equiv16\bmod25$

$6^5=7776\equiv1\bmod25$

J. W. Tanner
  • 60,406
0

Recall that

$\quad 2^9 = 512$

We define a recursive sequence as follows,

$\quad a_0 \equiv 6 \pmod{100}$

$\quad a_{n+1} \equiv {a_{n}}^2 \pmod{100}$

so that the answer we are seeking is $6 \cdot a_9 \pmod{100}$.

Without using any computing assistance (and with limited ability to square numbers)
we apply the algorithm,

$\quad a_1 \equiv 36 \pmod{100}$
$\quad a_2 \equiv (25+11)^2 \equiv 25^2 + 11 \cdot 50 + 11^2 \equiv 25 + 50 + 21 \equiv 96 \pmod{100}$
$\quad a_3 \equiv (-4)^2 \equiv 16 \pmod{100}$
$\quad a_4 \equiv 16^2 \equiv 56 \pmod{100}$
$\quad a_5 \equiv (50+6)^2 \equiv 50^2 + 6 \cdot 100 + 6^2 \equiv 36 \pmod{100}$
$\quad a_6 \equiv a_2 \pmod{100}$
$\quad a_7 \equiv a_3 \pmod{100}$
$\quad a_8 \equiv a_4 \pmod{100}$
$\quad a_9 \equiv a_5 \pmod{100}$

So the answer is $6 \cdot a_9 \equiv 6 \cdot 36 \equiv 16 \pmod{100}$.

CopyPasteIt
  • 11,366
0

We have

$\displaystyle {(1+5)^{512} =}$ $$ \sum_{k=0}^{512} \binom{512}{k}5^k = \sum_{k\in \{0,1,511,512\}}^{ } \binom{512}{k}5^k + \sum_{k=2}^{255} \binom{512}{k}(5^k + 5^{512-k}) + \binom{512}{256}5^{256}$$

If we apply $\text{(mod 100)}$ to the rhs we get

$$1 + 12 \cdot 5 + 12 \cdot 25 + 25 + 50\sum_{k=2}^{255} \binom{512}{k} + 25\binom{512}{256} \text{ (mod 100)}$$

As a consequence of Lucas's theorem or using Vandermonde's identity, we know that

$$ \binom{2^n}{m} \text{ is even when } 0 \lt m \lt 2^n$$

So $2$ divides $\binom{512}{k}$ for $2 \le k \le 255$.

In addition, using the theory found in

$\quad$ Middle binomial coefficient mod 4

we can now write

$$6^{513} \text{ (mod 100)} \equiv 6 \cdot (1 + 60 + 25 + 50) \text{ (mod 100)} \equiv 6 \cdot 36 \text{ (mod 100)} \equiv 16 \text{ (mod 100)} $$

CopyPasteIt
  • 11,366