We have
$\displaystyle {(1+5)^{512} =}$
$$ \sum_{k=0}^{512} \binom{512}{k}5^k = \sum_{k\in \{0,1,511,512\}}^{ } \binom{512}{k}5^k + \sum_{k=2}^{255} \binom{512}{k}(5^k + 5^{512-k}) + \binom{512}{256}5^{256}$$
If we apply $\text{(mod 100)}$ to the rhs we get
$$1 + 12 \cdot 5 + 12 \cdot 25 + 25 + 50\sum_{k=2}^{255} \binom{512}{k} + 25\binom{512}{256} \text{ (mod 100)}$$
As a consequence of Lucas's theorem or using Vandermonde's identity, we know that
$$ \binom{2^n}{m} \text{ is even when } 0 \lt m \lt 2^n$$
So $2$ divides $\binom{512}{k}$ for $2 \le k \le 255$.
In addition, using the theory found in
$\quad$ Middle binomial coefficient mod 4
we can now write
$$6^{513} \text{ (mod 100)} \equiv 6 \cdot (1 + 60 + 25 + 50) \text{ (mod 100)} \equiv 6 \cdot 36 \text{ (mod 100)} \equiv 16 \text{ (mod 100)} $$