4

calculate: $\int_{-\infty}^{\infty}\frac{\cos\frac{\pi}{2}x}{1-x^{2}}dx$ using complex analysis. My try: $\int_{-\infty}^{\infty}\frac{\cos\frac{\pi}{2}x}{1-x^{2}}dx$

symetric therefore : $ \int_{-\infty}^{\infty}\frac{\cos\frac{\pi}{2}x}{1-x^{2}}dx=2\int_{0}^{\infty}\frac{\cos\frac{\pi}{2}x}{1-x^{2}}dx$

calculate instead: $2Re\int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz$

use pizza slice:$2Re\int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz=\int_{0}^{2\pi}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}d\theta+\int_{0}^{R}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}dR+\int_{0}^{R}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}dR$

take limits:

$2Re\int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz=Lim_{R\rightarrow\infty}\int_{0}^{2\pi}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}d\theta+Lim_{\theta\searrow0}\int_{0}^{R}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}dR+Lim_{\theta\nearrow0}\int_{0}^{R}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}dR$

$2Re\int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz=0+\int_{0}^{R}\frac{1}{1-e^{\pi\theta i}R^{2}}dR+\int_{0}^{R}\frac{1}{1-e^{\pi\theta i}R^{2}}dR$

According the residue theorem at$ \int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz=2\pi iRes_{z=-1}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}=0 $ therefore:$2Re\int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz=0$

hash man
  • 129

3 Answers3

5

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\underline{\underline{Complex\ Integration}}:}$ \begin{align} &\bbox[10px,#ffd]{\int_{-\infty}^{\infty}{\cos\pars{\pi x/2} \over 1 - x^{2}}\,\dd x} = 2\int_{0}^{\infty}{\cos\pars{\pi x/2} \over 1 - x^{2}}\,\dd x = 2\,\Re\int_{0}^{\infty}{\expo{\pi x\ic/2} - \color{red}{\large\ic} \over 1 - x^{2}}\,\dd x \\[5mm] = &\ -\overbrace{\lim_{R \to \infty}\Re\int_{\large x\ \in\ R\expo{\pars{0,\pi/2}\,\ic}}{\expo{\pi x\ic/2} - \ic \over 1 - x^{2}}\,\dd x}^{\ds{=\ 0}}\ -\ 2\,\Re\int_{\infty}^{0}{\expo{\ic\pi\pars{\ic y}/2} - \ic \over 1 - \pars{\ic y}^{2}}\,\ic\,\dd y \\[5mm] = &\ 2\int_{0}^{\infty}{\dd y \over 1 + y^{2}} = 2\,{\pi \over 2} = \bbx{\large\pi} \\ & \end{align}


$\ds{\underline{\underline{Real\ Integration}}:}$ \begin{align} &\bbox[10px,#ffd]{\int_{-\infty}^{\infty}{\cos\pars{\pi x/2} \over 1 - x^{2}}\,\dd x} = {1 \over 2}\int_{-\infty}^{\infty}\bracks{% {\cos\pars{\pi x/2} \over 1 - x} + {\cos\pars{\pi x/2} \over 1 + x}}\,\dd x \\[5mm] = &\ -\int_{-\infty}^{\infty}{\cos\pars{\pi x/2} \over x - 1}\,\dd x = \int_{-\infty}^{\infty}{\sin\pars{\pi x/2} \over x}\,\dd x = \int_{-\infty}^{\infty}{\sin\pars{x} \over x}\,\dd x \\[5mm] = &\ \bbx{\large\pi} \\ & \end{align}
Felix Marin
  • 89,464
3

Let $f(z)=\dfrac{e^{i(\pi/2)z}}{1-z^2}.$

We want to find "$\int_{-\infty}^\infty f(x)\,dx$" and then take the real part. I have that in quotes as the integral is problematic unless we're careful about the singularities at $-1,1.$

A contour that will work contains the intervals $[-R,-1-r],$ $[-1+r,1-r],$ and $[1+r,R]$ (here $r,R>0$ and $r$ is much smaller than $R$). We also want the large semicircle described above. Around $-1$ we put the small semicircle of radius $r$ given by $-1-re^{it},0\le t \le \pi.$ Around $1$ we put the semicircle $1-re^{it},0\le t \le \pi.$ Hook these pieces up and orient the resulting closed contour positively. (It's good to draw a picture!)

Call this contour $\gamma=\gamma_{r,R}.$ Note that $\gamma$ does not contain either of $-1,1$ in its interior. Thus by Cauchy's theorem, $\int_\gamma f(z)\,dz =0.$

There are three intervals in this contour; let's denote the integral of $f$ over the union of all of them by $I(r,R).$ Note that $I(r,R)$ is real.

The first small semicircle:

$$\int_{0}^{\pi} f(-1-re^{it})(-ire^{it})\,dt=-\int_{0}^{\pi}\frac{\exp[i(\pi/2)(-1-re^{it})]ire^{it}}{1-(-1-re^{it})^2}\,dt$$ $$ = -\int_{0}^{\pi}\frac{i\exp[i(\pi/2)(-1-re^{it})]}{-2+re^{it}}\,dt.$$

As $r\to 0^+,$ the last integrand converges nicely to $\dfrac{i\exp[-i(\pi/2]}{-2} = 1/2.$ Thus the integral converges to $-\pi\cdot(1/2)=-\pi/2.$

The big semicircle:

$$\int_{0}^{\pi} f(Re^{it})iRe^{it}\,dt= \int_{0}^{\pi} \frac{\exp[i(\pi/2)Re^{it}]iRe^{it}}{1-R^2e^{2it}}\,dt.$$

This one's easy to estimate: Slap absolute values on everything to see the integrand is bounded above by $R/(R^2-1).$ (The fact that $\sin t\ge 0$ in $[0,\pi]$ comes in here.) As $R\to \infty,$ the integral $\to 0.$

The second small semicircle: Just like the first, giving a limit of $-\pi/2.$

So we have

$$I(r,R) + \text{ integrals over semicirles } = 0.$$

Our works shows that if $R\to \infty$ and $r\to 0$ (let $r=1/R$ if you like) we get

$$\int_{-\infty}^\infty \frac{\cos(\pi/2)x}{1-x^2 } = -(-\pi/2-\pi/2) =\pi.$$


Added later: Comment on errors you may have made. The problems start with "calculate instead"

$$2Re\int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz.$$

I'm not sure why you changed $x$ to $z;$ we're still on the real axis at this point. But that's a minor thing. The big problem is the denominator. As others pointed out, it should be $1-z^2.$ It's important to get this right.

Onward to the pizza slice:

$$2Re\int_{0}^{\infty}\frac{e^{\frac{\pi}{2}zi}}{1-e^{\pi zi}}dz=\int_{0}^{2\pi}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}d\theta+\int_{0}^{R}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}dR+\int_{0}^{R}\frac{e^{\frac{\pi}{2}\theta i}}{1-e^{\pi\theta i}R^{2}}dR.$$

The minor things: You have the same integral added to itself at the end? Also, $dR$ is strange, as $R$ is a limit of integration. And we have an integral over $[0,\infty)$ equal to a sum of integrals over finite intervals?

I'll stop here for now. Can you explain the strategy? What is the pizza slice contour? We can converse on this if you like.

zhw.
  • 105,693
  • 1
    $e^{\pi z/2}$ should be $e^{\pi i z /2}$. $\int_{-\infty}^\infty f(x) dx$ doesn't converge conditionally either, it diverges because of the poles at $\pm 1$. We can show that the original integral is equal to $\operatorname {v. ! p.} \int_{-\infty}^\infty f(x) dx$ though. Or to $$\int_{-\infty - i0}^{\infty - i0} \frac {e^{\pi i x/2}} {2 (1 - x^2)} dx.$$ – Maxim Aug 22 '20 at 15:30
  • Thanks, corrected the typo. – zhw. Aug 22 '20 at 18:48
1

You were really close. only one issue: let's say that the function within the pizza is $f_n$ and the limit is $f$. You assume that there $f_{n}\begin{array}{c} loc\\ \nRightarrow \end{array}f$ (locally uniformly convergence). which isn't correct. so is the solution completely wrong? no. if we split a circle from this area, with radius as small as we want: $\lim_{\delta\rightarrow0}\mathfrak{R\textrm{ }\int_{|\textrm{z-1|=\ensuremath{\delta}}}}\frac{e^{\frac{\pi}{2}z}dz}{z^{2}-1}=\lim_{\delta\rightarrow0}\mathfrak{R\textrm{ }\int_{0}^{2\pi}}\frac{e^{\frac{\pi}{2}e^{\theta i}\delta i+1}dz}{e^{\theta i}+2}d\theta=\mathfrak{R\textrm{ }}\int_{0}^{2\pi}\frac{1}{2}=\pi$ which leads to: $\int_{-\infty}^{\infty}\frac{\cos\frac{\pi}{2}x}{x^{2}-1}=\pi$