The solution for 3 real roots is buried in there, but it is not obtained by flipping signs. It really does involve the "cube roots of unity" which are spaced at 120 degrees, or $\dfrac{2\pi}{3}$ radians, apart around the unit circle.
In Wikipedia's formulation, the $\xi$ is a cube root of unity.
So first let's note that the reciprocal of $\xi^k$ is the complex conjugate of $\xi^k$ (the sign of the imaginary part is opposite)
$$ \dfrac{1}{\xi^k} = \left(\dfrac{-1\mp i\sqrt{3}}{2}\right)^k = \bar\xi^k = \overline{\xi^k} $$
Next note that there is another conjugate relationship
$$\begin{align*}\dfrac{\Delta_0}{C} & = \dfrac{\Delta_0}{\sqrt[3]{\dfrac{\Delta_1\pm\sqrt{\Delta_1^2-4\Delta_0^3}}{2}}} \cdot \dfrac{\sqrt[3]{\dfrac{\Delta_1\mp\sqrt{\Delta_1^2-4\Delta_0^3}}{2}}}{\sqrt[3]{\dfrac{\Delta_1\mp\sqrt{\Delta_1^2-4\Delta_0^3}}{2}}}\\
\\
&= \dfrac{\Delta_0 \sqrt[3]{\dfrac{\Delta_1\mp\sqrt{\Delta_1^2-4\Delta_0^3}}{2}}}{\sqrt[3]{\dfrac{\left(\Delta_1\pm\sqrt{\Delta_1^2-4\Delta_0^3}\right)\left(\Delta_1\mp\sqrt{\Delta_1^2-4\Delta_0^3}\right)}{4}}}\\
\\
&= \dfrac{\Delta_0 \sqrt[3]{\dfrac{\Delta_1\mp\sqrt{\Delta_1^2-4\Delta_0^3}}{2}}}{\sqrt[3]{\dfrac{\Delta_1^2-\Delta_1^2+4\Delta_0^3}{4}}}\\
\\
&= \sqrt[3]{\dfrac{\Delta_1\mp\sqrt{\Delta_1^2-4\Delta_0^3}}{2}} = C^*
\end{align*}$$
where $C^*$ has the opposite sign inside the cube root compared to $C$.
So now your formula for the roots looks like
$$x_k = -\dfrac{1}{3a}\left(b + \xi^k C + \overline{\xi^k}C^*\right) \quad k \in \{0,1,2\}$$
For the case of three real roots, $\Delta_1^2-4\Delta_0^3 < 0$, so we can write $C$ and $C^*$ as
$$C = \sqrt[3]{\dfrac{\Delta_1\pm i\sqrt{4\Delta_0^3-\Delta_1^2}}{2}}$$
$$C^* = \sqrt[3]{\dfrac{\Delta_1\mp i\sqrt{4\Delta_0^3-\Delta_1^2}}{2}} = \overline{C}$$
So $C^*$ is actually the complex conjugate of $C$.
Now the formula for the case of 3 real roots is
$$\begin{align*}x_k &= -\dfrac{1}{3a}\left(b + \xi^k C + \overline{\xi^k}\overline{C}\right) \quad k \in \{0,1,2\}\\
\\
&= -\dfrac{1}{3a}\left(b + \xi^k C + \overline{\xi^kC}\right) \quad k \in \{0,1,2\}\\
\end{align*}$$
Notice that the last two terms in that expression are complex conjugates, meaning that their imaginary terms will cancel out when added together, leaving you with a real number, for any value of $k$.
Alternately, the above expression is equivalent to
$$x_k = -\dfrac{1}{3a}\left(b+2r\cos\left[\theta+\dfrac{2\pi}{3}k\right]\right) \quad k \in \{0,1,2\}$$
Where the $\dfrac{2\pi}{3}k$ portion of the angle, contributed by $\xi^k$, represents the angle in the complex plane of the 3 cube roots of unity.
$r$ and $\theta$ are the magnitude and angle of $C$ in the complex plane.
Update per request in the comments
I'm going to ignore Wikipedia's hard to remember formulation and use Nickalls' formulation instead to find the 3 real roots of
$$x^3-6x^2+11x-6 =0 $$
Start by finding some parameters based on the geometry of the cubic curve
$$\begin{align*}
x_N &= \dfrac{-b}{3a} = 2\\
\\
\delta^2 &= \dfrac{b^2-3ac}{9a^2} = x_N^2 - \dfrac{c}{3a} = 4 - \dfrac{11}{3} = \dfrac{1}{3} \\
\\
y_N &= f(x_N) = \dfrac{2b^3}{27a^2} - \dfrac{bc}{3a} + d = 8-24+22-6 = 0\\
\\
h &= 2a\delta^3 =2\left(\dfrac{1}{3}\right)^{\frac{3}{2}} \\
\end{align*}$$
Then starting with the expression for the roots that is akin to the non-intuitive one presented by Wikipedia, let's express the roots in terms of a cosine function:
$$\begin{align*}
x_k &= x_N + \sqrt[3]{\dfrac{1}{2a}\left(-y_N + \sqrt{y_N^2 - h^2}\right)} + \sqrt[3]{\dfrac{1}{2a}\left(-y_N - \sqrt{y_N^2 - h^2}\right)} \\
\\
&= x_N + 2\delta\left(\dfrac{1}{2}\sqrt[3]{\dfrac{-y_N}{h} + \sqrt{\left(\dfrac{-y_N}{h}\right)^2 -1}} + \dfrac{1}{2}\sqrt[3]{\dfrac{-y_N}{h} - \sqrt{\left(\dfrac{-y_N}{h}\right)^2 -1}}\right) \\
\\
&= x_N + 2\delta\left(\dfrac{1}{2}\sqrt[3]{\cos(3\theta+2\pi k) +i\sin(3\theta+2\pi k) } + \dfrac{1}{2}\sqrt[3]{\cos(3\theta+2\pi k) - i\sin(3\theta+2\pi k)}\right) \\
\\
&= x_N + 2\delta\left(\dfrac{1}{2}\sqrt[3]{e^{i(3\theta+2\pi k)}} + \dfrac{1}{2}\sqrt[3]{e^{-i(3\theta+2\pi k)}}\right) \\
\\
&= x_N + 2\delta\left(\dfrac{e^{i\left(\theta+\frac{2\pi}{3} k\right)} + e^{-i\left(\theta+\frac{2\pi}{3} k\right)}}{2}\right)\\
\\
&= x_N + 2\delta\cos\left(\theta + \frac{2\pi}{3} k\right) \\
\end{align*}$$
With
$$\dfrac{-y_N}{h} = \cos(3\theta)$$
or
$$\theta = \dfrac{1}{3}\mathrm{arccos}\left(\dfrac{-y_N}{h}\right) = \dfrac{1}{3}\mathrm{arccos}\left(0\right) = \dfrac{\pi}{6}$$
Plugging in numbers:
$$x_k = 2 + \dfrac{2}{\sqrt{3}}\cos\left(\dfrac{\pi}{6}+\dfrac{2\pi}{3}k\right) \quad k \in\{0,1,2\}$$
and we find the roots to be
$$x_k = 2 + \dfrac{2}{\sqrt{3}} \left(\left\{\dfrac{\sqrt{3}}{2},-\dfrac{\sqrt{3}}{2},0\right\}\right) = \{3, 1, 2\}$$