Your proof is incorrect. The issue is that the $c$ which you choose may depend on $n$.
It turns out that the correct answer is in fact $e$. This is because for any continuous $f : [0, 1] \to \mathbb{R}$, we have
$\lim\limits_{n \to \infty} \int\limits_0^1 n x^n f(x) dx = f(1)$
This follows from the Stone-Weierstrass theorem as follows:
First, we prove that $\lim\limits_{n \to \infty} \int\limits_0^1 n x^n f(x) dx = f(1)$ for every $f$ of the form $f(x) = x^m$. We then extend this to all $f$ polynomial quite easily.
Suppose now that we have continuous $g : [0, 1] \to \mathbb{R}$. Given arbitrary $\epsilon > 0$, let $w = \frac{\epsilon}{3}$. Take polynomial $f$ s.t. $|f - g| < w$ (uniform norm) which is possible by Stone-Weierstrass, and take $N$ s.t. for all $n \geq N$, $\left|\int\limits_0^1 n x^n f(x) dx - f(1)\right| < w$. Then we have
\begin{equation}
\begin{split}
\left| \int\limits_0^1 n x^n g(x) dx - g(1) \right|
&\leq \left|\int\limits_0^1 n x^n g(x) dx - \int\limits_0^1 n x^n f(x) dx\right| + \left|\int\limits_0^1 n x^n f(x) dx - f(1)\right| + \left|g(1) - f(1)\right| \\[10pt]
&= \left|\int\limits_0^1 n x^n (g(x) - f(x)) dx \right| + |g(1) - f(1)| + \left|\int\limits_0^1 n x^n f(x) dx - f(1)\right| \\[10pt]
&< \left|\int\limits_0^1 n x^n (g(x) - f(x)) dx \right| + w + w \\[6pt]
&\leq \int\limits_0^1 n x^n \left|g(x) - f(x)\right| dx + 2w \\
&\leq w \int\limits_0^1 n x^n dx + 2w \\
&= w \frac{n}{n + 1} + 2w \\[6pt]
&<3w \\[6pt]
&= \epsilon
\end{split}
\end{equation}
And therefore $\lim\limits_{n \to \infty} \int\limits_0^1 n x^n g(x) dx = g(1)$