Let $\{X_n\}$ be a collection of positive random variable with $X_n \rightarrow X$ in probability. Prove that if $E(X_n) \rightarrow E(X)$, then $X_n \rightarrow X$ in $L^1$.
My partial answer: Let $(\Omega,B,P)$ be the probability space. For any $\varepsilon>0$, we have \begin{align*} \int_{\Omega} |X_n-X| dP &= \int_{\{|X_n-X|<\varepsilon\}} |X_n-X| dP+\int_{\{|X_n-X|\geq \varepsilon\}} |X_n-X| dP \\ &<\varepsilon P(|X_n=X|<\varepsilon)+\int_{\{|X_n-X|\geq \varepsilon\}} |X_n-X| dP \\ &<\varepsilon +\int_{\{|X_n-X|\geq \varepsilon\}} |X_n-X| dP \end{align*} The problem is I don't know how to estimate the second term in RHS with information convergence in probability and expectation convergence.
Thanks for your help.