While evaluating the weight $7$ integral $\displaystyle \int_0^1\frac{\ln^3\left(1-x\right)\ln^3\left(1+x\right)}{1+x}\:dx$
I managed to prove that
$$\int_0^1\frac{\ln^3\left(1-x\right)\ln^3\left(1+x\right)}{1+x}\:dx=\frac{3465}{32}\zeta \left(7\right)-\frac{423}{8}\ln \left(2\right)\zeta \left(6\right)-\frac{81}{2}\zeta \left(3\right)\zeta \left(4\right)-36\sum _{k=1}^{\infty }\frac{H_k}{k^6\:2^k}$$ $$+72\operatorname{Li}_7\left(\frac{1}{2}\right)+36\ln \left(2\right)\operatorname{Li}_6\left(\frac{1}{2}\right)-54\zeta \left(2\right)\zeta \left(5\right)-36\ln ^2\left(2\right)\zeta \left(2\right)\zeta \left(3\right)+90\ln ^2\left(2\right)\zeta \left(5\right)$$ $$-21\ln ^3\left(2\right)\zeta \left(4\right)+\frac{21}{2}\ln ^4\left(2\right)\zeta \left(3\right)+36\ln \left(2\right)\zeta ^2\left(3\right)-\frac{21}{10}\ln ^5\left(2\right)\zeta \left(2\right)+\frac{5}{28}\ln ^7\left(2\right)$$ While using the Mathemathica package written by Pisco found here to calculate that integral I saw that the result had MZV which is an indicator that the sum might not have a nice closed form but im quite stubborn and i'd like to know if this sum can be computed without these.