$A$ mapping $\displaystyle *$ from $\displaystyle F_{n}$ to $\displaystyle F_{n}$ is called adjoint if
$\displaystyle \begin{array}{{>{\displaystyle}l}} ( A+B)^{*} =A^{*} +B^{*}\\ ( AB)^{*} =B^{*} A^{*}\\ \left( A^{*}\right)^{*} =A;\\ \text{for all } A,B\in F_{n} \end{array}$
if $\displaystyle \lambda $ is any scalar matrix in $\displaystyle F_{n}$ then prove that $\displaystyle \lambda ^{*}$ must also be a scalar matrix.
For Hermitian adjoint, I know it is true. But for general adjoint, how can I prove this?