I am trying to find good approximations of the zero of function $$f(x)=\frac{W_{-1}(x)-W(x)}{W_{-1}(x)+W(x)}-k \quad \text{with} \quad 0 \leq k \leq 1\quad \text{and} \quad -\frac 1e \leq x \leq 0^-$$ From a numerical point of view, there are no major problem as long as $k$ is not too close to $1$.
$f(x)$ was developed as a series using $$W_{0,-1}(x)=\sum_{n=0}^\infty a_n\, y^n_\pm(x)\qquad \text{where} \qquad y_\pm(x)=\pm \sqrt{2(1+ex)}$$ (have a look here), the $a_n$'s forming he sequence $$\left\{-1,1,-\frac{1}{3},\frac{11}{72},-\frac{43}{540},\frac{769}{17280},-\frac{221} {8505},\frac{680863}{43545600},-\frac{1963}{204120},\frac{226287557}{37623398400} ,\cdots\right\}$$ This makes $$\frac{W_{-1}(x)-W(x)}{W_{-1}(x)+W(x)}=\sum_{n=0}^\infty b_n\, y_+^{2n+1}$$ where the $b_n$'s form the sequence $$\left\{1,-\frac{13}{72},\frac{433}{17280},-\frac{188297}{43545600},\frac{4028449}{75 24679680},-\frac{8293593643}{69528040243200},\cdots\right\}$$
Using series reversion, the result is $$y=\sqrt{2(1+ex)}=\sum_{n=0}^\infty c_n\, k^{2n+1}$$ where the $c_n$'s form the sequence $$\left\{1,\frac{13}{72},\frac{419}{5760},\frac{187553}{4838400},\frac{20011721}{836 075520},\frac{625581272639}{38626689024000},\frac{602467562104201}{516494013235 20000},\cdots\right\}$$
As shown below, the approximation is quite good up to $k \sim 0.85$ but it deteriorate quite quickly above.
$$\left( \begin{array}{ccc} k & \text{approximation} & \text{solution} \\ 0.00 & -0.367879 & -0.367879 \\ 0.05 & -0.367419 & -0.367419 \\ 0.10 & -0.366033 & -0.366033 \\ 0.15 & -0.363707 & -0.363707 \\ 0.20 & -0.360413 & -0.360413 \\ 0.25 & -0.356115 & -0.356115 \\ 0.30 & -0.350762 & -0.350762 \\ 0.35 & -0.344285 & -0.344285 \\ 0.40 & -0.336601 & -0.336601 \\ 0.45 & -0.327599 & -0.327599 \\ 0.50 & -0.317142 & -0.317142 \\ 0.55 & -0.305053 & -0.305053 \\ 0.60 & -0.291104 & -0.291104 \\ 0.65 & -0.274994 & -0.274994 \\ 0.70 & -0.256318 & -0.256318 \\ 0.75 & -0.234519 & -0.234519 \\ 0.80 & -0.208805 & -0.208691 \\ 0.85 & -0.178007 & -0.177601 \\ 0.90 & -0.140347 & -0.138902 \\ 0.95 & -0.093020 & -0.087549 \end{array} \right)$$
Question
How could I improve the approximation for the range $0.85 \leq k \leq 1$ ? Do I need to precise that this only art for art's sake ?
Edit
@Simply Beautiful Art provided an elegant and beautiful solution. As a tribute, I give below the result of the approximation for $k=1-10^{-p}$ $$\left( \begin{array}{ccc} p & \text{approximation} & \text{solution} \\ 1 & -0.13889384802843830195 & -0.13889550354096674629 \\ 2 & -0.02602863214400574022 & -0.02602863210501531541 \\ 3 & -0.00378956220505078207 & -0.00378956220504845816 \\ 4 & -0.00049497621618462337 & -0.00049497621618462337 \\ 5 & -0.00006102722387405542 & -0.00006102722387405542 \end{array} \right)$$