This is true for all sets with order $k=1$.
If $|G| = 1$ then there is an $x\in \mathbb R$ so that $G= \{x\}$. Now $x \le x$ as $x$ is the only element in $G$ that means $x \le a$ for all $a\in G$.
If we assume it is true for all sets of order $k$:
Let $|G| = k+1$. Let $x_0\in G$. Then $|G\setminus\{x_0\}| = k$ so $G\setminus\{x_0\}$ has a minimum element. Let's label it $m$.
$x_0\ne m$ as $x_0 \not \in G\setminus\{x_0\}$ and the elements of a set must be distinct. So either $x_0 > m$ or $x_0 < m$.
If $x_0 > m$ then for any $a \in G= G\setminus\{x_0\}\cup \{x_0\}$ either $a = x_0$ and $m < a_0$. Of $a\ne x_0$ and $a \in G\setminus\{x_0\}$ and $m = \min G\setminus\{x_0\} \le a$. Either way $m \le a$ so $m = \min G$.
If however $x_0 < m$ then for any $a\in G$ either $a=x_0$ and $x_0 \le a$ or $a\in G\setminus\{x_0\}$ and $x_0 < m \le a$. Either way $x_0 \le a$ so $x_0 = \min G$.
So $\min G$ always exist.
And as $\min G \le a$ for any $a \in G$ then $\min G$ is a lower bound of $G$. And if $k> \min G$ then $\min G \in G$ and $\min G < k$ so $k$ is not a lower bound.
So $\min G$ is the $\inf G$.