Let
$$A = \left[\begin{array}{rrrrr}6 & 2 & 2 & 2 & 2 \\ 2 & 6 & 2 & 2 & 2 \\ 2 & 2 & 6 & 2 & 2 \\2 & 2 & 2 & 6 & 2 \\ 2 & 2 & 2 & 2 & 6\end{array}\right] \in {M}_{5}(\mathbb{R})$$
Which of following options is $\det(A)$ ?
$4^4 \times 14$
$4^3 \times 14$
$4^2 \times 14$
$4 \times 14$
I think we have
$$\det \left[\begin{array}{ll}6 & 2 \\ 2 & 6\end{array}\right] = 4 \times 8$$
$$\det \left[\begin{array}{lll}6 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 6\end{array}\right] = 4^{2} \times10$$
and for any $n$ we have $\det(A_n)= 4^{n-1} \times (6+2×(n-1))$ so "1" is true.