Here's as general a generalization
as I can come up with.
What is
$K(a)
=\int_0^\infty \lfloor f(x)\rfloor h(x)dx
$
where $f(0) = 0,
f'(x) > 0,
g(f(x) = f(g(x) = x,
h(0) > 0, h'(x) < 0,
h(x) \to 0,
H'(x) = h(x)
$
as $x \to \infty$?
$\begin{array}\\
K(a)
&=\int_0^\infty \lfloor f(x)\rfloor h(x)dx\\
&=\sum_{m=0}^{\infty}\int_{f(x) \ge m}^{f(x) \le m+1} mh(x)dx\\
&=\sum_{m=0}^{\infty}m\int_{g(n)}^{g(m+1)} h(x)dx\\
&=\sum_{m=0}^{\infty}m(H(x)|_{g(m)}^{g(m+1)})\\
&=\sum_{m=0}^{\infty}m(H(g(m))-H(g(m+1))\\
&=\sum_{m=0}^{\infty}mH(g(m))-\sum_{m=0}^{\infty}mH(g(m+1))\\
&=\sum_{m=0}^{\infty}mH(g(m))-\sum_{m=1}^{\infty}(m-1)H(g(m))\\
&=\sum_{m=0}^{\infty}mH(g(m))-\sum_{m=1}^{\infty}mH(g(m))+\sum_{m=1}^{\infty}H(g(m))\\
&=\sum_{m=1}^{\infty}H(g(m))\\
\end{array}
$
If
$h(x) = e^{-x},
f(x) = x
$
then
$g(x) = x,
H(x) = e^{-x}
$
so the result is
$\sum_{m=1}^{\infty}H(g(m))
=\sum_{m=1}^{\infty}e^{-m}
=\dfrac{1/e}{1-1/e}
=\dfrac1{e-1}
$.