Let me start with what I have so far about the Galois group of $x^{15} - 2$ over $\mathbb{Q}$. After that, I'll list the properties of this group that I'm trying to show.
Let $\alpha = \sqrt[15]{2}$ and $\omega = e^{i\frac{2\pi}{15}}.$ Then $L = \mathbb{Q}(\alpha, \omega)$ is the splitting field of $x^{15} - 2$ over $\mathbb{Q}.$
$x^{15} - 2$ is irreducible over $\mathbb{Q}$ by Eisenstein's Criterion with prime $2$, so $\Gamma(L:\mathbb{Q(\omega)}) \cong \mathbb{Z}_{15}.$
Also, $\Gamma(\mathbb{Q}(\omega):\mathbb{Q}) \cong U_{15} \cong \mathbb{Z}_{2} \times\ \mathbb{Z}_{4}$ since $U_{15}$ is abelian, non-cyclic, order $8$, and has an element with $o(\bar{2}) = 4.$
Thus $|\Gamma(L:\mathbb{Q})| = 15 \cdot 8 = 120$.
Next note that $\Gamma(\mathbb{Q}(\omega):\mathbb{Q}) \cong \Gamma(L:\mathbb{Q})/\Gamma(L:\mathbb{Q(\omega)}).$ Specifically, $\phi: \Gamma(L:\mathbb{Q}) \to \Gamma(\mathbb{Q(\omega):\mathbb{Q}})$ defined by $\sigma \mapsto \sigma|_{\mathbb{Q}(\omega)}$ is onto with $\Gamma(\mathbb{Q(\omega):\mathbb{Q}}) \cong \mathbb{Z}_{2} \times\ \mathbb{Z}_{4}$ and $\ker\phi = \Gamma(L:\mathbb{Q(\omega)}) \cong \mathbb{Z}_{15}.$
Now here are the properties of $\Gamma(L:\mathbb{Q})$ that I'm trying to show.
Show there are elements $\rho, \sigma, \tau \in \Gamma(L:\mathbb{Q})$ such that
(1) $\rho, \sigma, \tau$ generate $\Gamma(L:\mathbb{Q}),$
(2) $\rho^{15} = \sigma^{4} = \tau^{2} = 1,$
(3) $\sigma^{-1}\rho\sigma = \rho^{7},$
(4) $\tau^{-1}\rho\tau = \rho^{14},$
(5) $\tau^{-1}\sigma\tau = \sigma$
Looks like $\rho$ would have to be a generator of $\ker\phi \cong \mathbb{Z}_{15}.$ Then from $\bar{\sigma} \in \Gamma(\mathbb{Q(\omega):\mathbb{Q}})$ with $o(\bar{\sigma}) = 4$ and $\bar{\tau} \in \Gamma(\mathbb{Q(\omega):\mathbb{Q}})$ with $o(\bar{\tau}) = 2$, I think $\sigma$ and $\tau,$ respectively, can be obtained.
Do the properties follow with these $\rho, \sigma, \tau$? I am especially wondering about (3) and (4).