I know that $\{\sin n\}_{n=1}^\infty$ is dense in $[-1, 1]$. That is, $$ \forall x\in[-1, 1] \quad \forall\varepsilon>0 \quad \exists m\in\mathbb{N}: \quad |\sin m-x|<\varepsilon. $$
Here $\mathbb{N}=\{1,2,3,\ldots\}$.
I have a hypothesis.
Hypothesis $$ \forall n\in\mathbb{N} \quad \forall x_k\in[-1, 1] \quad (k=\overline{1,n}) \quad \forall\varepsilon>0 \quad \exists\alpha\in\mathbb{R} \quad \exists\beta\in\mathbb{R}: \quad |\sin(\alpha k+\beta)-x_k|<\varepsilon \quad \forall k=\overline{1,n}. $$
And as I see, $\alpha$ may be 'very large' in absolute value.
Is the hypothesis true or false? I cannot prove it using density of $\sin n$ in $[-1, 1]$. Could you help me please?