1

How do we prove this ? $$\displaystyle\int_0^1\frac{\log(\log(\frac{1}{x}))}{1-x+x^2}dx=\frac{2\pi}{\sqrt{3}}\log(\frac{\sqrt[6]{32\pi^5}}{\Gamma(\frac{1}{6})})$$ My atempte: \begin{align*} \displaystyle\int_0^1\frac{\log(\log(\frac{1}{x}))}{1-x+x^2}dx&=\displaystyle\int_1^{\infty}\frac{\log(\log(t))}{1-t+t^2}dt&(\frac{1}{x}=t)\\ &=\displaystyle\int_0^{\infty}u\frac{e^u}{(e^u-1)^2+e^u}du&(\log(t)=u)\\ &=\displaystyle\int_0^{\infty}u\frac{1}{1+\left(\frac{e^u-1}{e^{\frac{u}{2}}}\right)^2}du\\ &=\displaystyle\sum_{n=0}^{\infty}(-1)^n\displaystyle\int_0^{\infty}u(e^{-nu})(e^u-1)^{2n}du\\ \end{align*}

In the last integration, I had no idea to complete the proof

Any help to prove this

And thanks in advance

StubbornAtom
  • 17,052
Bachamohamed
  • 1,142
  • In your substitution $\log t = u$ this implies $\log \log t = \log u$ whereas your numerator has $u$ only? –  Aug 04 '20 at 11:48

0 Answers0